
Old Sharetribe API
NOTE: This is a deprecated documentation from an old version of Sharetribe Go.
Currently Sharetribe Go doesn't have a public API, and while we will probably implement
one at some point, there's currently no timeline for when that might happen.
If you need a marketplace platform with API access, you could take a closer look at
Sharetribe Flex.

VERSION 2

For the API VERSION 1 (or alpha) see older documentation
See also information how to specify the version used

This is the Work-In-Progress documentation for the Sharetribe API . Feel free to modify, add
stuff, make it more accurate and comment as much as there are thoughts coming.

Contents:
Servers

Test server (api.sharetribe.fi)
Production server (api.sharetribe.com)

Formats
JSON (+ API version)
RSS/ATOM
GZIP

Client identification
Authentication

/tokens
POST

Parameters
Resources

People
Search users: /people

GET
Parameters
example response:

Single user: /people/<id>
GET

https://www.sharetribe.com/products/flex/
https://docs.google.com/a/sharetribe.com/document/d/1orLtljjDHbJ4J_KUqZ6a_PZOOvZKzBMz-onkWKLm2tY/edit#

example response:
PUT (not yet done)

Single user’s devices: /people/<id>/devices
GET

example response:
POST

parameters
Single user’s listings: /people/<id>/listings

GET
Parameters

Listings
/listings

GET
parameters
examples:
example response:

POST
parameters

/listings/<id>
GET

example response:
PUT (note yet done)

/listings/<id>/comments
POST

parameters
returns
example response:

Conversations & Messages
/people/<id>/conversations

GET
parameters
returns
example response:

POST
parameters
returns
example response:

/people/<person_id>/conversations/<conversation_id>/
GET

parameters
returns
example response:

POST

parameters
returns

PUT
Feedbacks

/people/<id>/feedbacks
GET

returns
example response:

POST (not yet done)
Badges

/people/<id>/badges
GET

returns
example response:

Communities
/communities

GET (not yet done)
/communities/<id>

GET
example response:

/communities/<id>/classifications
GET

parameters
/api_version

GET
example response:

Questions & Discussion
Resources

Servers
If you are connecting to the Sharetribe servers hosted by the Sharetribe Ltd, there are two
options.

Test server (api.sharetribe.fi)

The test server is a sandbox like environment where you can play around without the fear of
deleting critical data or confusing real users. There are few communities hosted in the test

server that are also visible in the web:
○ http://alpha.sharetribe.com
○ http://gamma.sharetribe.com
○ http://translate.sharetribe.com

Any of these communities can be used to post any test comment and you can modify the
existing ones. Don’t expect any data to stay there as all can be changed. Part of the accounts
are dummy accounts and part are made by developers or translators, so don’t unnecessarily
spam any account with messages or comments for example.

The test server has completely different data base, so the also user accounts are completely
different. The server might be running newer version of the Sharetribe code than the production
server depending on the situation of the development team. The test server response times are
usually longer than the production server.

Few of the features are not always on at the test server, as they are needed only occasionally
and cause separate costs in the could infrastructure:

● Search
● background job processing (some of the notification emails for example require this)

If you are doing testing where you need one of these to work, please notify core team at the
Developers Flowdock.

Production server (api.sharetribe.com)
This is the real server. You may connect freely and authenticate as users existing in the
Sharetribe platform. Be sure to inlcude client identification to your requests. You should do that
on the test server too, but at least make sure those are filled when contacting production server.
It’s not currently enforced, but might become so in future versions of the API.

Formats

JSON (+ API version)
Possible MIME types:
application/json
application/vnd.sharetribe+json; version=2

The use of a MIME type that defines the version is highly recommended as the first one uses
the newest version by default and returns the latest representation of the resource and as the
API updates, that might break down the application which expects the response in old format.
So specify version in the Accept header and you’ll know what you get.

http://alpha.sharetribe.com
http://gamma.sharetribe.com
http://translate.sharetribe.com
https://sharetribe.flowdock.com/invitations/4f606b0784e5758bfdb25c30515df47cff28f7d5-main

The generic JSON type is supported mainly to make exploring the API bit easier in a browser

RSS/ATOM
Possible MIME types:
application/atom+xml

Sharetribe currently supports only ATOM as the feed format, as it’s bit more versatile than
RSS2.0 and supported by all major feed readers.

Currently only /listings responds to ATOM requests. It supports the same parameters as
/listings GET JSON API

GZIP
The API can return Gzipped responses if the request has Accept-Encoding header with “gzip”.

Client identification
You should use HTTP header Sharetribe-Client that has your app’s name, contact email and
url. This makes it easier for us to measure usage from different sources and also gives us a
possibility to easily contact our API users in case some bigger changes need to be informed.

example:
curl -H "Sharetribe-Client:
SharetribeAndroid,contact@greatdevteam.com,http://greatdevteam.com"

Thanks to Kippt API for this idea!

Authentication
Sharetribe API can be used with or without authentication. Authenticated requests must contain
the API token and the response for authenticated requests can contain more information, for
example listings that are visible only to the members of a specific community. Some requests
are not possible without authentication, e.g. posting a new listing.

Sharetribe API uses token based authentication. You can request the token for the user by

https://kippt.com/developers/

submitting username or email and password. Do not store user passwords anywhere, store the
token!

/tokens

POST

Parameters
login: User’s username or email
password: User’s password

Returns:
{"api_token":"6iKztUsbkemg6dLRopd1",
"person":{

"username":"jacky",
"phone_number":”1234567”,
"locale":"en",
"given_name":"Proto",
"description":null,
"family_name":"Testro",
"id":"drty-AWmWr4yxgUi0sbZZU"
}

}

Example: curl -H "Accept: application/vnd.sharetribe+json; version=1" -H "Content-Type:
application/json" -X POST --data '{"login": "example", "password": "secret"}'
http://api.sharetribe.fi/tokens

Then you can provide the api_token in further API calls to make the server handle the calls as
authenticated user.

You can provide the authentication token in the headers (recommended) or as parameter:

Examples:
curl -H "Sharetribe-API-Token: sTNEbgjeudi5BqGR3Hcy"
or
curl /listings?api_token=sTNEbgjeudi5BqGR3Hcy

MOST OF THE STUFF BELOW IS OVERSTRIKE AS IT MIGHT BE REMOVED/CHANGED
SOON, SEE NOTE AT THE TOP OF THE DOCUMENT

Resources

People
The users. Each user is visible even to unauthenticated API requests, but the response contains
possibly more information about the user if the request is authenticated.

Search users: /people

GET
Get the array of users who match the criteria given in parameters.

Parameters
email: returns the person that has the email, or empty array if no match found.
community_id: to get the members of that community (this can't be combined currently with
email param)

example response:
{people":

[
{
"username":"kassi_tester3",
"id":"aGlUQW2q4r4yCYUi0sbZZU",
"given_name":"Proto",
"family_name":"Testro",
"thumbnail_url":"http://test.host/images/thumb/missing.png",
"picture_url":"http://test.host/images/medium/missing.png"
}

],
”per_page” :"50",
"page":”1”,
“total_pages”: “1”
}

http://test.host/images/thumb/missing.png
http://test.host/images/medium/missing.png

Single user: /people/<id>

GET
Returns the single user specified by the <id>. Contact details are included only if request is
authenticated. Email is included only if the requested user himself is authenticated.

example response:

{"given_name":"Proto",
"communities":[

{"name":"testcommunity_1","id":11,"domain":"test.sharetribe.com"},
{"name":"kassi3","id":12,"domain":"kassi3.sharetribe.com"}],

"family_name":"Testro",
"description":null,
"username":"tester1",
"id":"b_rYu0Wm0r4y8IUi0sbZZU",
"locale":"en",
"phone_number":null
"picture_url":"http://api.sharetribe.fi/system/images/bU8aHSBEKr3AhYaaWPEYjL/medium/holid
ay_in_canary.jpg?1336145277",
"thumbnail_url":"http://api.lvh.me:3000/system/images/bU8aHSBEKr3AhYaaWPEYjL/thumb/holi
day_in_canary.jpg?1336145277"
}

PUT (not yet done)
Update user’s profile. Only can modify the profile of the authenticated user

Single user’s devices: /people/<id>/devices
Main usage is to store iOS devices for push notifications.

GET
Returns the list of devices of the user.

example response:
[

{
"device_type":"iPad",
"device_token":"738SDK2FFKD29D"

}
]

POST
Add a device to the user

parameters
device_type: The type of the device.
device_token: The device token needed for push notifications.

Single user’s listings: /people/<id>/listings

GET
Returns the list of listings made by the user.

Parameters
(same as listing index below)

Listings
The offers and requests in the service. There are several categories and new ones are probably
added in the future. You can expect every listing to contain the basic attributes, but should not
rely on knowing all categories, and be able to show a listing also in unknown category with
some default texts.

The listings currently have tags, and in future they might have subcategories. The solution how
this is implemented is still open, and for that reason the API does not yet handle tags (or
subcategories) at all.

/listings
All listings that match the criteria given in parameters. Results are ordered by created_at so that
newest are first.

GET

parameters
community_id: returns listings only from single community (obligatory)
status: (optional)Possible values “open”, “closed” or “all”. Returns only listings with that status.
Default is “open”.
listing_type: Possible values “request” or “offer”. Returns only listings with that type.
category: (optional) String for category name. Returns only listings with that category.
per_page: how many results you want to be in one response. Default 50.
page: When using pagination, define which page of results you want to get. Page numbers start
from 0.
search: string that has word or part of word that is searched. Will match to title, description and
tags. Currently can be combined only with status and listing_type parameters (category will be
ignored if search parameter is given).
(Not yet implemented)
minLat
maxLat
minLon
maxLong

examples:

http://api.sharetribe.fi/listings.json?community_id=1&type=offer

example response:
{"per_page":"2",
"page":”1”,
“total_pages”: “2”,
"listings":[

{normal listing hash},
{normal listing hash}

]
}

POST
Creates a listing. Requires api-token authorization.

parameters
title: The title of the listing. 2-90 characters. Not needed for rideshare listings as for them the
title is created from origin and destination parameters.
description (optional): Longer description text. max 5000 characters.
category: Current options: item, favor, rideshare, housing. (Don’t rely in your code of this list

http://api.sharetribe.fi/listings.json?community_id=1&type=offer

staying the same, as additions are coming)
share_type: (required) possible values depend on the commmunity, and can be figured out
from the community’s categorization_tree. On top level there are probably just offer/request but
the the categories may include more sub-ShareTypes.
visibility: (optional) Means where the listing should be shown, i.e. in which communities it is
relevant. Defaults to “all_communities” (meaning all the communities where the user is
member). Other possible values are "this_community".
privacy: (optional) Selects if the listing is only shown to logged in members of the
communities, or if it can be shown in public internet. Possible values “public” and “private”. The
default is “private”.
community_id: Specify in which community is the listing added to. The authorized user must
be member of that community. The communities are included in the data of the user.
image: (optional) The image for the listing as multipart file upload.
price_cents: (optional) The price in cents (meaning the 1/100s of the currency.) E.g. 15 EUR
should have 1500.
currency: (optional) The official currency code, e.g. “EUR”, “USD”
quantity: (optional) A short text explaining what quantity does the price concern.
latitude: (optional) Latitude of the listing location
longitude: (optional) Longitude of the listing location
address: (optional) Address for the listing location.

valid_until: (optional for some share types) How long is the listing get open. (Max 1 year.)
Can be left out if offering items for lending or repeating ridesharing.
+Only for ridesharing listings:
origin: The text for the starting point of the ride. The title will de “origin - destination”.
destination: The text for the destination of the ride. The title will de “origin - destination”.
destination_latitude: (optional) Latitude of the rideshare listing destination location
destination_longitude: (optional) Longitude of the rideshare listing destination location
destination_address: (optional) Address for the rideshare listing destination location.

/listings/<id>
single listing

GET
Get the listing specified by <id>

e.g. http://api.sharetribe.fi/listings/1.json

example response:
{"type":"offer",

http://api.sharetribe.fi/listings/1.json

"thumbnail_url":"http://api.lvh.me:3000/system/images/17/thumb/pakki.jpg?1329352553",
"updated_at":"2012-06-29T05:50:42+03:00",
"times_viewed":19,
"comments":[

{
"created_at":"2012-06-29T05:50:56+03:00",
"content":"cool tool",
"author_id":"bU8aHSBEKr3AhYaaWPEYjL"
},
{
"created_at":"2012-06-29T05:58:04+03:00",
"content":"indeed",
"author_id":"bU8aHSBEKr3AhYaaWPEYjL"
}

],
"image_urls":[

"http://api.lvh.me:3000/system/images/17/medium/pakki.jpg?1329352553"
],
"created_at":"2012-02-16T02:34:21+02:00",
"valid_until":null,
"description":"power drill, hammer etc.",
"tags":["hammer","tool"],
"title":"tools",
"category":"item",
"share_type":"sell",
"id":313,
"origin_location":{

"address":"Provi-tex, Laredo, TX 78043, USA",
"latitude":27.4967,
"google_address":"Provi-tex, Laredo, TX 78043, USA",
"longitude":-99.4497
},

"author":{
"given_name":"Antti",
"family_name":"Vee",
"username":"gekko",
"description":"Nice guy",
"communities":[

{
"domain":"test",
"name":"test",
"id":1
}

http://api.lvh.me:3000/system/images/17/thumb/pakki.jpg?1329352553
http://api.lvh.me:3000/system/images/17/medium/pakki.jpg?1329352553

],
"id":"bU8aHSBEKr3AhYaaWPEYjL",
"phone_number":"3248923",
"locale":"es"

},
"visibility":"all_communities",
“privacy”:”public”,
"price_cents":2900,
"currency":"EUR",
"quantity":"per piece"}

PUT (note yet done)
Update single listing with new details. (not yet implemented)

/listings/<id>/comments

POST
Creates a comment for the listing specified by <id>. Requires api-token authorization.

parameters
content: The text of the comment.
community_id: This is required to know which context was the comment made in.

returns
201 created

example response:
{"created_at":"2012-07-21T01:52:04+03:00",
"listing_id":333,
"content":"testing comments",
"author":{

"username":"kassi_tester3",
"thumbnail_url":"http://test.host/images/thumb/missing.png",
"given_name":"Proto",
"family_name":"Testro",
"id":"aGlUQW2q4r4yCYUi0sbZZU",
"picture_url":"http://test.host/images/medium/missing.png"
}

}

http://test.host/images/thumb/missing.png
http://test.host/images/medium/missing.png

Conversations & Messages
Conversation happens between two users and can have multiple messages. Conversations can
be related to a listing or be a free form messages between two users.

/people/<id>/conversations

GET
Returns all the conversations of the user. Results have pagination.

parameters
per_page: how many results you want to be in one response. Default 50.
page: When using pagination, define which page of results you want to get.

returns
200 ok

example response:

{"page":1,
"per_page":50,
“total_pages”: “1”,
"conversations":[
{

"title":"Item offer: Sledgehammer",
"status":"pending",
"listing_id":94,
"updated_at":"2012-07-22T06:03:09+03:00",
"participations":[

{
"last_received_at":"2012-07-29T02:48:46+03:00",
"feedback_skipped":false,
"person":
{

"username":"kassi_tester27",
"thumbnail_url":"http://test.host/images/thumb/missing.png",
"given_name":"Proto",

http://test.host/images/thumb/missing.png

"family_name":"Testro",
"id":"dfphUE2q4r4yZSUi0sbZZU",
"picture_url":"http://test.host/images/medium/missing.png"

},
"is_read":true,"last_sent_at":null

},
{

"last_received_at":"2012-07-29T02:48:46+03:00",
"feedback_skipped":false,
"person":
{

"username":"kassi_tester26",
"thumbnail_url":"http://test.host/images/thumb/missing.png",
"given_name":"Proto",
"family_name":"Testro",
"id":"dfoCMk2q4r4yZSUi0sbZZU",
"picture_url":"http://test.host/images/medium/missing.png"

},
"is_read":true,
"last_sent_at":null

}
],
"created_at":"2012-07-22T06:03:09+03:00",
"id":16,
"last_message":
{

"created_at":"2012-07-30T05:39:44+03:00",
"sender_id":"dfphUE2q4r4yZSUi0sbZZU",
"content":"This is the last thing said"

}
}
]
}

{

POST
Starts a new conversation.

parameters

http://test.host/images/medium/missing.png
http://test.host/images/thumb/missing.png
http://test.host/images/medium/missing.png

target_person_id: The id of the target person, with whom the conversation is started.
listing_id: (optional) if the conversation is related to a listing, the id should be provided.
status: Can be “free” or “pending”. Pending means a direct request to the resource in the listing,
and the other party is asked to accept or reject the pending request. Pending message needs to
have a listing_id. Free message means discussion without explicit request to the resource. It
may have listing_id if it’s stared from a listing page or go without if it is started on a profile page.
content: The textual content of the first message
title: (optional if listing_id provided) The title of the conversation. If listing_id is provided, this
can be left empty and the title is generated automatically based on the listing title.
community_id: This is required to know which context was the conversations is started.

returns
201 created

example response:
{"status":"pending",
"listing_id":179,
"updated_at":"2012-07-22T22:48:59+03:00",
"created_at":"2012-07-22T22:48:59+03:00",
"participations":
[

{
"feedback_skipped":false,
"is_read":true,
"person_id":"bg_e5e1dyr4yQrUi0sbZZU",
"last_sent_at":null,
"last_received_at":"2012-07-22T22:48:58+03:00"
},
{
"feedback_skipped":false,
"is_read":true,
"person_id":"bg_VQ41dyr4yQrUi0sbZZU",
"last_sent_at":null,
"last_received_at":"2012-07-22T22:48:58+03:00"
}

],
"title":"Item offer: Sledgehammer",
"id":72,"messages":
[

{
"created_at":"2012-07-22T22:48:59+03:00",

"sender_id":"bg_e5e1dyr4yQrUi0sbZZU",
"content":"This will be the first message of the conversation"
}

]
}

/people/<person_id>/conversations/<conversation_id>/

GET
Returns all the messages in the conversation specified by conversation_id.

parameters

returns
200 ok

example response:
{"title":"Item offer: Sledgehammer",
"status":"pending",
"participations":
[

{
"feedback_skipped":false,
"is_read":false,
"person_id":"bco6ls1c0r4A06Ui0sbZZU",
"last_sent_at":"2012-07-22T21:44:24+03:00",
"last_received_at":"2012-07-22T21:44:24+03:00"
},
{
"feedback_skipped":false,
"is_read":true,
"person_id":"bcpL3S1c0r4A06Ui0sbZZU",
"last_sent_at":"2012-07-22T21:44:24+03:00",
"last_received_at":"2012-07-22T21:44:24+03:00"
}

],
"messages":
[

{

"created_at":"2012-07-22T21:44:24+03:00",
"sender_id":"bco6ls1c0r4A06Ui0sbZZU",
"content":"Let's talk"
},
{
"created_at":"2012-07-22T21:44:24+03:00",
"sender_id":"bcpL3S1c0r4A06Ui0sbZZU",
"content":"Ok! You start."
}

],
"listing_id":96,
"updated_at":"2012-07-22T21:44:24+03:00",
"created_at":"2012-07-22T21:44:24+03:00",
"id":25
}

POST
Sends a new message to this conversation.

parameters
content: The textual content of the message
community_id: This is required to know which context was the conversations is started.

returns

Normal conversation JSON after the addition of the new message. (see GET for this URL)

PUT
Update the conversation. Mainly used if the other party accepts or rejects the request.
parameters
status: can be "free”, “pending", "accepted", "rejected", "payed", "confirmed" or "canceled"
community_id: This is required for easier notifications to the conversation participants.

Feedbacks
Feedbacks that users give each other after a transaction.

/people/<id>/feedbacks

GET
Get the feedbacks of the person specified by <id>.

returns
200 ok

example response:
{
"feedbacks":[

{
"text":"Nice job!",
"created_at":"2012-08-19T20:33:26+03:00",
"grade":0.75,
"author_id":"d7i1wU6Imr4y0SUi0sbZZU",
"receiver_id":"d7gtlw6Imr4y0SUi0sbZZU",
"converstation_id":56
},
{
"text":"well done",
"created_at":"2012-08-19T20:33:25+03:00",
"grade":0.5,
"author_id":"d7i1wU6Imr4y0SUi0sbZZU",
"receiver_id":"d7gtlw6Imr4y0SUi0sbZZU",
"converstation_id":55
}

],
"grade_amounts":[

["exceeded_expectations",0,"5"],
["slightly_better_than_expected",1,"4"],
["as_expected",1,"3"],
["slightly_less_than_expected",0,"2"],
["less_than_expected",0,"1"]
],

"page":1,
"total_pages":1,
"per_page":50
}

POST (not yet done)
Add new feedback for the person specified by <id>.

Badges
Badges are virtual rewards that are automatically given to users based on their activity in the
service.

/people/<id>/badges

GET
Get the badges of the person specified by <id>.

returns
200 ok

example response:

{"badges":[
{
"created_at":"2012-08-19T21:34:44+03:00",
"picture_url":"http://test.host/images/badges/rookie_large.png",
"description":"You have added an offer or a request in Sharetribe for the first time. Here

we go!",
"name":"rookie",
"id":2
},
{
"created_at":"2012-08-19T21:34:44+03:00",
"picture_url":"http://test.host/images/badges/volunteer_bronze_large.png",
"description":"You like to put your skills in use by helping others. You have three open

service offers in Sharetribe.",
"name":"volunteer_bronze",
"id":3
}

]}

Communities
Thir resouce contains the different communities in Sharetribe. In web they have separate
subdomains, e.g https://oin.sharetribe.com/ for OIN tribe.

http://test.host/images/badges/rookie_large.png
http://test.host/images/badges/volunteer_bronze_large.png
https://oin.sharetribe.com/

/communities

GET (not yet done)
Get the list of tribes

/communities/<id>

GET
Get the details of a single community.

Explanations to some fields:
custom_color1: May contain the hex color code e.g. “FF0042” which is the first customization
color used by the community.
custom_color2: May contain a second custom color code. Many communties don’t have this
even if they have the first color set. Then it is advisable to use the custom_color1 in all custom
colored elements
service_name: Contains the name of the whole service that is displayed to the users of this
tribe. The point here is that some tribes have been white label customized and don’t have the
Sharetribe name visible. In most cases the service_name is “Sharetribe”, but execptions do
exists and it’s advisable to use the service_name to the members of that tribe, as that’s probably
the name they are used to see.
service_logo_style: Tells if a community has white label settings and whole sharetribe logo
should not be shown. There are 3 possible values: “full-logo” = (default) show full sharetribe
logo where needed, “icon-logo” = show only the S logo, “no-logo” = no Sharetribe or S logo
should be shown when using this communitiy.
categories_tree: Contains the explanation of which share_types and categories are used in
this community. First level in the JSON is the top level share_type (also called as listing_type)
That key contains a hash, where the keys are the category names. If the value is empty there
are no subcatgegories or sub share_types used for that category. If those are used, they are
listed in the hash that is the value. Every listing must have a category and a sharetype, if there
is no subcategory or share_type, the top level one is used (those exists always) e.g. “favor,
offer” and if sub levels exists, those must be used always, e.g. “tools, lend” (not “item, offer”).

example response:
{"id"=>125,
"name"=>"sharetribe_testcommunity_1",
"slogan":"Test slogan",
"description":"Test description",
"custom_color1":“ff22dd”,
"custom_color2":null,
"payments_in_use":false,
"available_currencies":null,
"join_with_invite_only":false,
"members_count":138,
"domain":"sharetribe_testcommunity_2.lvh.me:9887",
"service_name":"Sharetribe",
“service_logo_style”:”full-logo”,
"logo_url":"http://test.sharetribe.com/logos/header/default.png",
"cover_photo_url":"http://test.sharetribe.com/cover_photos/header/default.jpg",
"location":{

"latitude":60.1904,
"longitude":24.8937,
"address":"Somecity",
"google_address":"Somecity, 12345, Finland"}

},
"categories_tree":{

"offer":{
"item":{

"subcategory":[
"tools","sports","music","books","games","furniture",
"outdoors","food","electronics","pets","film",
"clothes","garden","travel","other"

],
"share_type":["sell","rent_out","lend","offer_to_swap","give_away"]

},
"favor":{},
"rideshare":{},
"housing":{

"share_type":["sell","rent_out","share_for_free"]
}

},
"request":{

"item":{
"subcategory":[

http://test.sharetribe.com/cover_photos/header/default.jpg

"tools","sports","music","books","games","furniture",
"outdoors","food","electronics","pets","film",
"clothes","garden","travel","other"

],
"share_type":["buy","rent","borrow","request_to_swap","receive"]
},

"favor":{},
"rideshare":{},
"housing":{

"share_type":["buy","rent","accept_for_free"]
}

}
}
}

/communities/<id>/classifications
The classifications (categories and share_types) used in this community. The categories_tree is
included in the community basic hash, but in order to get the translated display_names of the
categories and to know whether price field should be used etc. this call is needed.

GET
Get more detailed information about the classifications that are used in this community:
translated names, descriptions and payment information. Price is true if price field should be
used with that share_type. Payment is true if payment is possible even if price is not used in the
listing (e.g. buying). Price_quantity_placeholder is a helping text that can be used as example of
what quantity does the price consider. If it’s null, the quantity is not used, just the price field.

parameters
locale: The 2 letter code to define which translations should be returned, e.g. “en”, “fi” etc.

example response:

{
"tools":

{"translated_name":"tools",
"description":"Tools",
"price":false,
"price_quantity_placeholder":null,
"payment":false

},

"rent_out":{
"translated_name":"renting out",
"description":"I'm renting it out for a fee",
"price":true,
"price_quantity_placeholder":"time",
"payment":true

},
"buy":{

"translated_name":"buying",
"description":"I want to buy it",
"price":null,
"price_quantity_placeholder":null,
"payment":true

}
}

/api_version

GET
Get the details of the current API version. This is intended to use e.g. in mobile clients so that
the user can be prompted to update to the newest version if the client app is using a deprecated
or non-supported API version. There may also be an optional message returned from the
server, and it is a good idea to show that to the user if it exists. The request must contain a
proper version definition in the MIME type.

The returned hash contains always a response to the API version used in the request MIME
type. “your_version” has possible values “latest”, “deprecated” or “not_supported”.

example response:
{"your_version":"latest",
"message":null}

or

{"your_version":"not_supported",
"message":”The version you are using is too old, please update.”}

Questions & Discussion
● What method for authentication?

○ token auth for now
■ supported by devise

○ Good examples?
■ Twitter uses OAuth,

● it seems bit tedious to get started with that
■ Kippt uses http-basic + token

● simpler to do
■ Twilio (often recommended as good example)

●
● Should we code the API responses inside our current controllers or separate

○ If inside we can benefit from existing filters and checks (but might need to bypass
some)

○ if outside we need to write all and remember to update the API too if new checks
added. But on the other hand code stays more clear and API versioning is easier

■ Looks better to do separate controllers for API
● How to do API versioning.

○ Should we already add /api/v1/ in urls or is it enough to do that for v2 onwards
■ probably no need for v1

○ read about best practices, should it be in url or headers
■ It seems putting it in the headers is a more correct way of doing things, as

returning links with the api verion as part of the uri will get those broken or
inconsistent when version changes, (at least if upgrading only part of API
or if there’s links store on client side and then there will mix of links to
different versions)

■ however, requiring the header always can make the API harder to
discover and play with, so it might be good to make it return also some
sensible stuff if mime type is just application/json.

● like github does it: http://developer.github.com/v3/mime/
■ Actually even better format would be to use MIME type parameters for

version, e.g. application/vnd.sharetribe; version=1
● How to serve different languages in API?

○ having language in url is nice in web because people can copy/paste links to
different language sites. In API it’s usually not needed, as resource contents are
rarely translated. So basic use is without language in the url and if need for
specific language there is a header for that

■ although supporting similarurl part language as the service itself could
make sense for the sake of consistency, but not urgent now as there’s no
immediate need for this at all. (The error messages is the first thing that

http://developer.github.com/v3/mime/
http://tools.ietf.org/html/rfc2616#section-14.4

comes to mind)
● How to handle translation files in different mobile clients?

○ any best practices?
○ for two identical clients we could have the same translation file

● Should we add a client header when making API public, like Kippt:
You should also use X-Kippt-Client HTTP header with app's name, contact email and
url. This makes it easy for us to contact you if there's a case for that (i.e. deprecated
features).
Format: curl -H "X-Kippt-Client:
BookmarkingApp,contact@bookmarkingapp.com,http://bookmarkingapp.com"

○ Yes we should

Resources
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http good post about
how to do things correctly, and follow up:
http://blog.steveklabnik.com/posts/2011-08-07-some-people-understand-rest-and-http

http://bookmarkingapp.com
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http
http://blog.steveklabnik.com/posts/2011-08-07-some-people-understand-rest-and-http

