qwertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwert yuiopasdfghjkl<u>zxcvbnmqw</u>ertyui vuiopa opasdf Probability of Finding Words in License Plates sdfghjk opasdf Math IA 2016 ghjklzx Matthew Wardynski sdfghj Northcoast Prep. Academy fghjklz klzxcvl xcvbnmqwertyuiopasdfghjklzxcv bnmqwertyu <u>*Kalifonia*</u> hjklzxcvbn 5/1MH710 ngijklzxcvi 718 pasdfghjklzxc m califor pasdfghiklzxcvb rtyui

uiopas <u>BWU191</u> cvbre california pasdfgh, izxcvbnm <u>4NZZ454</u> pas dfghjklzxcvbnmqwertyuiopasdfg

Introduction

California passenger vehicles have standard issue license plates that contain one number, three letters, and three more numbers (in that order), and, rarely, the three letters in a license plate spell a three-letter word. When driving, I often times notice cars that have these three-letter words on them and wonder how common they are. In this investigation, I will determine the probability that the license plate of a California passenger vehicle contains a three-letter word (excluding customized or special license plates). Having determined this probability, I will then explore the applications of my result.

Determining the Theoretical Probability

For the purposes of this investigation, consider the following definitions:

L = number of three-letter possibilities suitable for license plates w = number of three-letter Scrabble words suitable for license plates word = a three-letter sequence that is valid in the Official Scrabble Players Dictionary word plate = a non-custom license plate that contains a three-letter word car = a passenger vehicle with a standard issue California license plate p = probability that a car has a word plate, approximated to three decimal places

Ignoring any restrictions, the initial number of three-letter possibilities that make a word would be $26 \times 26 \times 26 = 17,576$. According to the Official Scrabble Players Dictionary, there are only 1063 three-letter words. This list can be found on the following page. In the California vehicle code for standard issue license plates, three-letter groups cannot end or begin with an "I," "O," or "Q" because an "I" may be mistaken for the number one, and an "O" or "Q" may be mistaken for the number zero. This would decrease *L* to $23 \times 26 \times 23 = 13,754$, and decrease *w*

to 923 because there are 140 three-letter words in the Scrabble dictionary that start or end with "I" "O" or "Q."

Another factor that decreases both L and w is the list of banned license plates in the CA DMV Vehicle Registration Manual section 4.115, which is displayed to the right. This list includes any three-letter words that could be considered offensive or inappropriate (GOD, JEW, SEX, etc.). So, 143 more three-letter combinations are ruled out, which lowers the total of L down to 13,611. Next, 68 is subtracted off of w because only 68 of the 143 banned words are in the Scrabble dictionary. This makes w = 855.

Restricted License Plate Configuration												
ABM	ANO	APE	ARS	ASB	ASS	BAD	BAG	BED				
BRA	BUN	BUT	BVD	CHP	CIA	COC	COK	CON				
COP	CQC	CQK	CQN	CUL	CUM	CUN	CUR	CUZ				
DAG	DAM	DDT	DIC	DIE	DIK	DOA	DUD	DUF				
DUM	DUN	FAG	FAN	FAT	FBI	FCK	FKU	FOC				
FOK	FQC	FQK	FQU	FUC	FUD	FUG	FUK	FUN				
FUX	FUY	GAT	GAY	GEE	GOD	GQD	GUT	HAG				
HAM	HEL	HEN	HIC	HIK	HIV	HOG	HOR	HQR				
JAP	JAZ	JEW	JIG	KIK	KKK	KOC	KOK	KON				
KOX	KQC	KQK	KQN	KQX	KYK	LAY	LSD	MEX				
NAG	NGR	NIG	NIP	NUN	OVA	PEA	PEE	PEW				
PIG	PIS	POT	POW	PST	PUD	PUS	PYS	QVA				
RAG	RAT	RAW	RUT	SAC	SAK	SAM	SEX	SHT				
SIF	SIN	SLA	SOB	SOT	SQB	SUE	SUK	SUR				
SUX	TIT	TUB	UCK	UPP	UPU	URN	URP	USB				
USR	VUE	VUK	VUX	WAD	WOP	WQP	YEP	YID				
Note: there are 144 words on this list, but only 143												
do not start or end with an "I" "O" or "Q"												

Official Scrabble Players Dictionary, Three-Letter Words

AAH	AAL	AAS	ABA	ABS	ABY	ACE	ACT	ADD	ADO	ADS	ADZ	AFF	AFT	AGA	AGE	AGO	AGS	AHA	AHI	AHS
AID	AIL	AIM	AIN	AIR	AIS	AIT	AJI	ALA	ALB	ALE	ALL	ALP	ALS	ALT	AMA	AMI	AMP	AMU	ANA	AND
ANE	ANI	ANT	ANY	APE	APO	APP	APT	ARB	ARC	ARE	ARF	ARK	ARM	ARS	ART	ASH	ASK	ASP	ASS	ATE
ATT	AUK	AVA	AVE	AVO	AWA	AWE	AWL	AWN	AXE	AYE	AYS	AZO	BAA	BAD	BAG	BAH	BAL	BAM	BAN	BAP
BAR	BAS	BAT	BAY	BED	BEE	BEG	BEL	BEN	BES	BET	BEY	BIB	BID	BIG	BIN	BIO	BIS	BIT	BIZ	BOA
BOB	BOD	BOG	BOO	BOP	BOS	BOT	BOW	BOX	BOY	BRA	BRO	BRR	BUB	BUD	BUG	BUM	BUN	BUR	BUS	BUT
BUY	BYE	BYS	CAB	CAD	CAF	CAM	CAN	CAP	CAR	CAT	CAW	CAY	CEE	CEL	CEP	CHI	CIG	CIS	СОВ	COD
COG	COL	CON	COO	COP	COR	COS	COT	COW	сох	COY	COZ	CRU	CRY	CUB	CUD	CUE	CUM	CUP	CUR	CUT
CUZ	CWM	DAB	DAD	DAG	DAH	DAK	DAL	DAM	DAN	DAP	DAS	DAW	DAY	DEB	DEE	DEF	DEL	DEN	DEP	DEV
DEW	DEX	DEY	DIB	DID	DIE	DIF	DIG	DIM	DIN	DIP	DIS	DIT	DOC	DOE	DOG	DOH	DOL	DOM	DON	DOR
DOS	DOT	DOW	DRY	DUB	DUD	DUE	DUG	DUH	DUI	DUM	DUN	DUO	DUP	DYE	EAR	EAT	EAU	EBB	ECO	ECU
EDH	EDS	EEK	EEL	EEW	EFF	EFS	EFT	EGG	EGO	EKE	ELD	ELF	ELK	ELL	ELM	ELS	EME	EMO	EMS	EMU
END	ENG	ENS	EON	ERA	ERE	ERG	ERN	ERR	ERS	ESS	EST	ETA	ETH	EVE	EWE	EYE	FAB	FAD	FAG	FAH
FAN	FAR	FAS	FAT	FAX	FAY	FED	FEE	FEH	FEM	FEN	FER	FES	FET	FEU	FEW	FEY	FEZ	FIB	FID	FIE
FIG	FIL	FIN	FIR	FIT	FIX	FIZ	FLU	FLY	FOB	FOE	FOG	FOH	FON	FOO	FOP	FOR	FOU	FOX	FOY	FRO
FRY	FUB	FUD	FUG	FUN	FUR	GAB	GAD	GAE	GAG	GAL	GAM	GAN	GAP	GAR	GAS	GAT	GAY	GED	GEE	GEL
GEM	GEN	GET	GEY	GHI	GIB	GID	GIE	GIF	GIG	GIN	GIP	GIS	GIT	GNU	GOA	GOB	GOD	GOO	GOR	GOS
GOT	GOX	GRR	GUL	GUM	GUN	GUT	GUV	GUY	GYM	GYP	HAD	HAE	HAG	HAH	HAJ	HAM	HAO	HAP	HAS	HAT
HAW	HAY	HEH	HEM	HEN	HEP	HER	HES	HET	HEW	HEX	HEY	HIC	HID	HIE	HIM	HIN	HIP	HIS	HIT	HMM
HOB	HOD	HOE	HOG	ном	HON	HOO	HOP	НОТ	HOW	HOY	HUB	HUE	HUG	HUH	HUM	HUN	HUP	HUT	HYP	ICE
ICH	ICK	ICY	IDS	IFF	IFS	IGG	ILK	ILL	IMP	INK	INN	INS	ION	IRE	IRK	ISM	ITS	IVY	JAB	JAG
JAM	JAR	JAW	JAY	JEE	JET	JEU	JIB	JIG	JIN	JOB	JOE	JOG	JOT	JOW	JOY	JUG	JUN	JUS	JUT	KAB
KAE	KAF	KAS	KAT	KAY	KEA	KEF	KEG	KEN	KEP	KEX	KEY	KHI	KID	KIF	KIN	KIP	KIR	KIS	KIT	KOA
КОВ	KOI	KOP	KOR	KOS	KUE	KYE	LAB	LAC	LAD	LAG	LAH	LAM	LAP	LAR	LAS	LAT	LAV	LAW	LAX	LAY
LEA	LED	LEE	LEG	LEI	LEK	LET	LEU	LEV	LEX	LEY	LIB	LID	LIE	LIN	LIP	LIS	LIT	LOB	LOG	LOO
LOP	LOT	LOW	LOX	LUD	LUG	LUM	LUN	LUV	LUX	LYE	MAC	MAD	MAE	MAG	MAM	MAN	MAP	MAR	MAS	MAT
MAW	MAX	MAY	MED	MEG	MEH	MEL	MEM	MEN	MET	MEW	мно	MIB	MIC	MID	MIG	MIL	MIM	MIR	MIS	MIX
MMM	MOA	MOB	MOC	MOD	MOG	MOI	MOL	MOM	MON	MOO	MOP	MOR	MOS	мот	MOW	MUD	MUG	MUM	MUN	MUS
MUT	MUX	MYC	NAB	NAE	NAG	NAH	NAM	NAN	NAP	NAV	NAW	NAY	NEB	NEE	NEG	NET	NEW	NIB	NIL	NIM
NIP	NIT	NIX	NOB	NOD	NOG	NOH	NOM	NOO	NOR	NOS	NOT	NOW	NTH	NUB	NUG	NUN	NUS	NUT	OAF	OAK
OAR	OAT	OBA	OBE	OBI	OCA	OCH	ODA	ODD	ODE	ODS	OES	OFF	OFT	OHM	ОНО	OHS	OIK	OIL	OKA	OKE
OLD	OLE	OMA	OMS	ONE	ONO	ONS	OOF	OOH	OOT	OPA	OPE	OPS	OPT	ORA	ORB	ORC	ORE	ORG	ORS	ORT
OSE	OUD	OUR	OUT	OVA	OWE	OWL	OWN	OWT	OXO	OXY	PAC	PAD	PAH	PAK	PAL	PAM	PAN	PAP	PAR	PAS
PAT	PAW	PAX	PAY	PEA	PEC	PED	PEE	PEG	PEH	PEN	PEP	PER	PES	PET	PEW	PHI	PHO	PHT	PIA	PIC
PIE	PIG	PIN	PIP	PIS	PIT	PIU	PIX	PLY	POD	POH	POI	POL	POM	POO	POP	POS	POT	POW	POX	PRO
PRY	PSI	PST	PUB	PUD	PUG	PUL	PUN	PUP	PUR	PUS	PUT	PYA	PYE	PYX	QAT	QIS	QUA	RAD	RAG	RAH
RAI	RAJ	RAM	RAN	RAP	RAS	RAT	RAW	RAX	RAY	REB	REC	RED	REE	REF	REG	REI	REM	REP	RES	RET
REV	REX	REZ	RHO	RIA	RIB	RID	RIF	RIG	RIM	RIN	RIP	ROB	ROC	ROD	ROE	ROM	ROO	ROT	ROW	RUB
RUE	RUG	RUM	RUN	RUT	RYA	RYE	RYU	SAB	SAC	SAD	SAE	SAG	SAL	SAN	SAP	SAT	SAU	SAW	SAX	SAY
SEA	SEC	SEE	SEG	SEI	SEL	SEN	SER	SET	SEV	SEW	SEX	SHA	SHE	SHH	SHY	SIB	SIC	SIG	SIM	SIN
SIP	SIR	SIS	SIT	SIX	SKA	SKI	SKY	SLY	SOB	SOC	SOD	SOH	SOL	SOM	SON	SOP	SOS	SOT	SOU	SOW
SOX	SOY	SPA	SPY	SRI	STY	SUB	SUE	SUK	SUM	SUN	SUP	SUQ	SUS	SYN	TAB	TAD	TAE	TAG	TAJ	TAM
TAN	TAO	TAP	TAR	TAS	TAT	TAU	TAV	TAW	TAX	TEA	TEC	TED	TEE	TEG	TEL	TEN	TES	TET	TEW	THE
THO	THY	TIC	TIE	TIL	TIN	TIP	TIS	TIT	TIX	TIZ	TOD	TOE	TOG	TOM	TON	TOO	TOP	TOR	TOT	TOW
TOY	TRY	TSK	TUB	TUG	TUI	TUM	TUN	TUP	TUT	TUX	TWA	TWO	TYE	UDO	UGH	UKE	ULU	UMM	UMP	UMS
UNI	UNS	UPO	UPS	URB	URD	URN	URP	USE	UTA	UTE	UTS	VAC	VAN	VAR	VAS	VAT	VAU	VAV	VAW	VEE
VEG	VET	VEX	VIA	VID	VIE	VIG	VIM	VIN	VIS	VOE	VOG	VOW	VOX	VUG	VUM	WAB	WAD	WAE	WAG	WAN
WAP	WAR	WAS	WAT	WAW	WAX	WAY	WEB	WED	WEE	WEN	WET	WHA	WHO	WHY	WIG	WIN	WIS	WIT	WIZ	WOE
WOK	WON	WOO	WOS	WOT	WOW	WRY	WUD	WYE	WYN	XIS	YAG	YAH	YAK	YAM	YAP	YAR	YAS	YAW	YAY	YEA
YEH	YEN	YEP	YES	YET	YEW	YIN	YIP	YOB	YOD	YOK	YOM	YON	YOU	YOW	YUK	YUM	YUP	ZAG	ZAP	ZAS
ZAX	ZED	ZEE	ZEK	ZEP	ZIG	ZIN	ZIP	ZIT	ZOA	Z00 2	ZUZ 2	ZZZ								
Source: USA - Official Scrabble Players Dictionary 5 (Merriam-Webster) 2014: see Works Cited																				

So, the calculations are as follows.

$$L = (23 \times 26 \times 23) - 143 \qquad \qquad w = 1063 - 140 - 68 \\ = 13,754 - 143 \qquad \qquad = 1063 - 208 \\ = 13,611 \qquad \qquad = 855$$

Now that *L* and *w* have been found, the ratio $\frac{w}{L}$ is used to find the percent of cars that have word plates.

$$\frac{w}{L} = \frac{855}{13,611} \approx 6.28\%$$

So, the probability of a randomly chosen car having a word plate is p = 0.0628.

Analysis and Applications

The probability that I found, 6.28%, was less than I originally expected. I often see two, three, or even four word plates in a fairly short amount of time. Perhaps there appear to be many word plates because they are more noticeable. For example, someone is probably more likely to notice a license plate that reads "CAT" than one that reads "NKJ." Another element that should be taken into consideration is exactly what is meant by a "word." In this exploration, I define a word to be a valid Scrabble word and used the Scrabble dictionary to find a list of three-letter words. However, this dictionary may not be perfectly accurate for the purposes of this paper because there are some words in it that most people would not recognize, and likewise other words that they may recognize that are not included. For example, one of the first words in the three-letter Scrabble dictionary is "aas," which according to Princeton's WordNet is the plural of "aa" which is "a dry form of lava resembling clinkers." Most people (and Microsoft Word 2010) do not recognize "aas" as a word. On the other hand, there are many people who would consider texting terms like "LOL," "WTF," and other abbreviations or acronyms like "ETC" and "DVD" as words. Also, there are certain three-letter proper names that are not found in the Scrabble dictionary (Kim, Tim, etc.) that people may consider words. In order to make the most accurate dictionary for this paper, I would have to make my own list of three-letter words by starting with a list like the Scrabble dictionary, dispose of any words I didn't recognize, and add in the words that I thought were missing from the list. However, for now the original definition of a word is acceptable and I will move forward with my investigation using the theoretical probability of 6.28%.

Now that I have found this theoretical probability, I can use it to answer other practical probability questions that have to do with license plates and see if the results agree with my own experience. If we treat the probability of word plates occurring as a Bernoulli trial, seeing one car is a trial that can be considered a success if the car has a word plate or a failure if it does not. The classic simple example of a Bernoulli trial is flipping a coin where getting heads is considered a success and tails a failure. The license plate trials can be seen as an extremely lopsided coin toss where there is only a 6.28% chance of success and a 93.72% chance of failure.

I see about 50 cars on one roundtrip to school, so I usually see around 3 word plates per trip because 6.28% of 50 is 3.14. However, what is the probability that I will see no word plates? Seeing 50 cars is like repeating the Bernoulli trial 50 times with 6.28% chance of success for each trial. This yields a binomial random variable (Ross). Using this fact, we can find the probability of having a specific number of successes by using the probability mass function of a binomial random variable *S* having parameters (n, p), given by

$$P(S = k) = {n \choose k} p^k (1 - p)^{n-k}, \qquad k = 0, 1, ..., n$$

and

$$\binom{n}{k} = \frac{n!}{(n-k)!\,k!}$$

where k is the number of successes, n is the number of trials, and p is the probability of success for one trial (Ross). To make sense of this formula, we can look at the individual parts and what they correspond to.

$$\underbrace{P(S = k)}_{\substack{\text{the probability of}\\ \text{getting } k \text{ successes}}} = \underbrace{\binom{n}{k}}_{\substack{\text{the binomial coefficient,}\\ \text{the number of ways}\\ \text{to arrange } k}} \underbrace{p^k}_{\substack{\text{successes}\\ \text{probability } p}} \underbrace{(1-p)^{n-k}}_{\substack{n-k \text{ failures}\\ \text{occurring with}}}$$

Applying this formula, the probability that we see no word plates, and thus have no successes, is calculated as

$$P(S = 0) = {\binom{50}{0}} 0.0628^0 (1 - 0.0628)^{50-0} \approx 0.039049$$

Therefore, there is about a 4% chance that I will not see a word plate on a roundtrip to school.

When looking at the probability function for various values, a graph is helpful. Using the graph and data table below, we can answer other practical questions like, what is the probability that I will see at least 3 word plates out of 50 cars? Since having 3 or more successes is the same as not having 0, 1, or 2 successes, so we can see from the graph that the approximate value is

$$P(S \ge 3) = 1 - P(S = 0) - P(S = 1) - P(S = 2)$$

\$\approx 1 - 0.0390 - 0.1308 - 0.2148 = 0.6154\$

This probability of 0.6154 leads to the conclusion that 6 out of 10 days (or 3 out of 5 days) I will see 3 or more word plates on a roundtrip to school. This seems reasonable because it agrees with my earlier observation that I often see several word plates in what seems to be a short amount of time. Rather than just relying on this inexact observation, I decided to record empirical observations firsthand. Instead of recording data from cars on a trip to school, each day for a week I went to various locations to collect data from parked cars with standard issue license plates. I recorded the license plate of every car I saw until I reached 50. The following table shows the 50 trials per day with the word plates marked in red. The second row of the table gives the number of word plates per day.

Day	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
Success	<i>S</i> = 3	<i>S</i> = 2	S = 1	<i>S</i> = 6	<i>S</i> = 3	<i>S</i> = 2	S = 4
1	6JEK858	4JOC412	5WHX026	7EXK834	5LEH891	4PXY801	5MYT778
2	7CLN793	5PRF030	5NBT475	4YNC425	6WDP551	5EEP927	3RKB360
3	3XMK442	6WCY224	6MIA557	6NBE945	6HGA468	6ZZF867	6ZSH087
4	4XTR711	5RJE692	4RRW183	6PSK934	4LGY052	5RAJ670	6WQT168
5	2MOA374	5XCS770	7MTY990	6HRZ296	6HPA551	4TMV252	3GPT224
6	6UUX592	7NGD788	4UXX915	5LRX213	6FBF449	5FGH683	7EEF251
7	7HNG298	5CRY326	5BIJ329	5FVN890	6UJG793	5AWX460	7HVF809
8	6PIN199	4LDZ844	4YXM570	5CTN117	5XHT621	4MCP806	5PJU414
9	6HPV071	7RMG998	6VNA337	4RRA127	5JTC709	4NZG686	5RNF109
10	6STS489	2RHA050	7HFU830	5NFE632	4EKY804	3PQT631	7ASM893
11	5GTN256	4SWM757	7BLM698	4SUH780	5XUC265	5YIJ258	5UVP447
12	5NFK158	4XMG816	7FMA268	5YCY482	7ABA295	5EQF904	6ZOS536
13	5ZMV118	7LCX320	7GJS523	6JYK562	7MEP122	6XXL367	5YPR017
14	6YXM264	6YHE755	7RPF221	6VBU315	6JTP338	6KTN628	6PZS095
15	7PHY127	5ZHL326	4ZEW131	6YIR946	5RPK510	6ZEL057	5CQP421
16	5RPT383	7DWU038	6LUY832	7MJX054	5TBT936	6WSH175	4NIM778
17	7LPW658	4HLL478	5VVF200	7DCT329	6CPW878	5JNA056	5ZPL331
18	5YIG217	5DRD702	6LUY840	4ARB658	6RQP551	4VUT270	4KSM186
19	3TSJ920	7ACM422	6VNA337	6FSE990	6MSD628	5AML676	4KZM034
20	4ZNJ437	6ECT622	4KIU733	5FIX802	7AAL459	5NJP690	6LAP561
21	5TQH254	7AKM010	4BPU518	6CRU106	5KFZ944	7EZE423	6LDB761
22	7JRG296	5WUF270	4WKU006	3LTY570	5YZL126	4MPA029	4BOB446
23	5EZG296	5TMC811	6TWF389	6FHZ827	7EXS892	6CNR971	6REW933
24	5EZG144	5FRS445	6AYG698	7RVL161	4UHP281	5etd736	6RGR687
25	6LCU497	6XMC897	6UBS336	5MDM481	6RTE231	3TDB576	6GAC740
26	7BQD288	5CQT570	3KIL479	5VQJ262	6CPM168	4WEG240	6WOM629
27	4DSN081	4WVZ591	6SFW189	6WNX013	5NDK854	5SXT347	5ZEB003
28	5RGJ467	5THA112	6LFT087	5XXH958	5HDY090	3WVZ263	6XMR590
29	7NSC663	7DYZ632	4CQD262	7RUP880	4DID051	6LFB276	6ZYA950
30	5TVH166	7NUT693	6RQR687	7KNX520	7CDA750	6SZH579	6TRR309
31	5VWY779	7HLY931	7DWU111	5LVL146	6NSV326	6KTN450	6XMC897
32	6NMH370	4DMV426	4GKE778	5AYE768	5VFG883	6RKC143	6LDF857
33	6VFU096	7BSX582	5SDA164	7JQN180	7BPD181	4LXM344	3VDZ302
34	7HUA976	6ZDY905	6YRH623	6MIZ843	5CHE970	6XCL630	6LVY239
35	7PHY095	7MZK159	6SAV947	7LBJ628	5EFY385	7KTT508	4RSP579
36	3TPG080	6XUL315	6NAN932	7LOB972	5ZDV822	6AQL725	6FNU386
37	6NMG184	6SLV220	5TWM150	4JPX380	5ZRD677	7LZY868	4CRM633
38	6PYJ618	4TEH546	3WOC327	7FWL334	4AME018	6UWM533	6SQG566

39	7KFR227	6SNL244	5LJV784	6EDY452	6UUY499	5UMA924	6RBX890
40	5CIK148	4NLM881	5BZF237	5FQM562	5LSU957	5DTG367	6BFR634
41	6PHM671	7BFU747	7NUZ772	7PAV465	5PUZ269	6JOD397	3EXF572
42	6A0Y283	6BLP732	4BJP976	7LHM629	6EXB691	6FYX861	6NCR778
43	6XMU511	7NUE267	4SPK279	5DLD533	7RGN331	7AGP772	5TRV328
44	6DBB263	7DZF675	5VYZ034	7PYW883	6CSU811	6KMY913	7DSV929
45	7KWY842	6FHS554	7CDZ775	6BRJ912	7PYW860	5XPX228	6STM512
46	6BYF918	5BSM199	7LNB144	5YBE599	3JDK591	7RUP912	7ALP697
47	3KDJ199	6LDF857	5JBX788	6GAR842	4GGE099	2SLJ207	6PZS095
48	6DSP568	5BHZ724	3MSF704	6HGA468	7FEB910	4ARB658	5KFB291
49	6ANY206	6UJJ933	7PXU488	6PZA965	4RVR435	3VFK254	5BSM199
50	7MZK063	7AGR378	4LFA350	5MFW868	7LCS870	7BVX257	3MQY001

Over the course of the first 5 days, the table shows 3 days where I saw 3 or more word plates. This agrees with my earlier calculation that $P(S \ge 3) = 0.6154 \approx \frac{3}{5}$. Overall in my observations, the number of successes, *S*, ranges from 1 to 6 and has a mean of 3.00. This mean is close to the theoretical mean calculated earlier: 3.14. Since my number of samples is not very big, I would expect that the mean would get closer to 3.14 if I increased the number of samples, for example if I recorded 50 trials each day for a month instead of just a week.

In the data in the table, there are some license plates that are observed twice. This may seem to affect the accuracy of the data, but it is practical to see the same car more than once in the course of a week. This investigation is conducted as a probability experiment with replacement; once a car is seen, it is released back into the sample space and can be counted again if chosen. If the trials were done without replacement, each car would disappear from existence once it was seen.

Another interesting question is how probable it is to see two word plates in a row. I have noticed this on the way to school and in the data I collected. For example, on day 4 the word plate 5FIX802 was immediately followed by another word plate, 6CRU106. To find probabilities like this, rather than just looking at the number of successes in n trials, we must focus on the time between successes, or the interarrival time. That is, if I just saw a word plate, how many more trials do I need to wait to see another? This number, T, corresponds to a geometric random variable. T is the number of the trial on which the first success occurs (Mendenhall). Using this fact, we can find the probability of having to wait n trials by using the probability mass function of a geometric random variable T having parameter p, given by

$$P(T = n) = (1 - p)^{n-1}p, \quad n = 1, 2, ...$$

where *p* is the probability of success for one trial (Ross, Mendenhall). This makes sense because 1 - p is the probability of failure and n - 1 is the number of failures, whereas *p* is the probability of the one and only success. There is also no upper bound on *n* because, theoretically, it is possible that we can keep searching for a word plate indefinitely without success. Also, $n \neq 0$ because *n* is the number of trials away from the first trial we are observing. If n = 0 then the interarrival time between the two successes would be 0 and therefore we would be observing the same trial twice.

So, the probability that the interarrival time is 1, or that the two successes come one after the other, is calculated as

$$P(T = 1) = (1 - 0.0628)^{1-1} 0.0628 = 0.0628$$

Therefore, when n = 1 the probability is the same as the original p. At first this seemed confusing to me, but it does make sense that the probability of seeing one word plate after another is the same as the probability of a word plate occurring because we are using the first word plate as a starting place to find the next. In this case, the first word plate is not counted as a trial because it has already been found, so seeing the second license plate is considered the first trial. Thus, it makes sense that when n = 1 the probability is the original p because the probability of a word plate occurring in the first trial is always 0.0628. In order to make further sense of this concept, it is helpful to look at a graph of what the probability for a geometric random variable looks like.

The graph can be used to determine the probabilities in other questions like, what is the probability that the first word plate I see is on the 12^{th} car I pass? From the graph, we see that the probability is roughly 0.03. The probability decreases as the number of trials increase because the process stops once there is one success. That is, it is less likely to go a longer time without getting a success. It may seem counterintuitive that it is more probable to see a word plate on the first trial than on the second, but it is less likely to get to the second trial because 6.28% of the time the success will be found on the first and the process will end.

Since the interarrival time *T* has a geometric distribution, the mean value, or expected value, is given by $\mu = \frac{1}{p}$ (Mendenhall). Using this equation, we find the expected interarrival time to be 15.9. So, there are about 16 cars in between every word plate. From the 21 successes I observed during my data collection, my interarrival times are 4, 3, 41, 8, 23, 57, 32, 2, 1, 11, 4, 11, 15, 8, 9, 25, 44, 18, 4, 2, and 24. These are the interarrival times if I consider my data as an ongoing Bernoulli process that is not separated by groups of 50. This data set has a median of 11, mean of 16.5, and ranges from 1 to 56. This mean is close to the expected interarrival time of 15.9, which is surprising since my data set is not that large and has such a wide range.

Conclusion

At first when I calculated the theoretical probability p of word plates occurring in standard issue California license plates, I did not expect the probability to be so low. However, after applying probability theory, I saw that this theoretical value of p lead to results similar to what my own experience with license plates suggested.

Recognizing that finding a word plate on a car is like flipping a lopsided coin helped me model the situation with a Bernoulli trial. Recognizing that seeing 50 cars is like repeating this Bernoulli trial 50 times allowed me to model this situation with a binomial random variable. Using this model, I was able to see how the probabilities were distributed and thus see just how common word plates really are, which was the original intent of this exploration. I was then able to extend my exploration beyond just looking at the number of successes to looking at how the successes themselves were distributed by modeling the interarrival time with a geometric random variable.

It is interesting to see how a simple concept like a Bernoulli trial can lead to so many different results. The probability models used in this paper are helpful for answering questions and conducting experiments about license plate probability, but they can also be used in a variety of applications across different disciplines. There is a wide range of instances where there are two possible outcomes: whether or not a product is defective in manufacturing, whether or not a trait is inherited in genetics, whether or not the patient is cured in medicine, and so on.

In all these applications, the underlying real-life situation is different, but they all can be modeled the same way; mathematical modeling is a powerful tool for understanding the world. Having completed this mathematical exploration, I will continue to observe cars with word plates, but now with a greater understanding of the underlying randomness of the process.

Works Cited

CA Dept. of Motor Vehicles "CA Dept. of Motor Vehicles License Plate Introduction." *CA.gov.* n.d. Web. 18 Mar. 2016.

CA Dept. of Motor Vehicles. "Vehicle Registration Manual, 4.115 Personalized Configurations." *California Code of Regulations, Article 3.* Governmentattic.org, 28 Jan. 2013. Web. 2 Mar. 2016.

Mendenhall, William, et al. *Mathematical Statistics with Applications*. 4th ed. North Scituate, MA: Duxbury, 1990. Print.

Princeton University. "About WordNet." WordNet. Princeton University. 2010.

Ross, Sheldon M. Introduction to Probability Models. 5th ed. New York: Academic, 1993. Print.

"USA - Official Scrabble Players Dictionary 5 (Merriam-Webster) 2014." *Word Helper*. Richard Loxley Ltd, n.d. Web. 3 Mar. 2016.