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Abstract—In this paper, an observer-based fuzzy adaptive
controller for a class of uncertain nonstrict nonlinear systems
with unknown control direction and unknown dead-zone is
presented. First, by using equivalence dead-zone inverse and
a linear state transformation, the original system is converted
to a new one. Then, by using fuzzy logic systems, the unknown
nonlinearities are approximated based on an adaptive mecha-
nism, and a nonlinear fuzzy state observer is designed to estimate
immeasurable states. The dynamic surface control technique is
employed to solve the problem of explosion of complexity in
the traditional backstepping approach, and then, this method is
combined with Nussbaum gain function to address the problem
of unknown control direction. Besides, barrier Lyapunov func-
tion is employed to overcome the violation of system output.
The proposed controller guarantees that the closed-loop system
is stable; all the system states are bounded, and tracking errors
converge to a neighborhood of the origin. A numerical simula-
tion is provided to confirm the usefulness of the proposed control
design.

Index Terms—Barrier Lyapunov function, fuzzy logic, non-
strict feedback systems, Nussbaum functions, observer-based
control.

I. INTRODUCTION

THERE have been significant developments in nonlinear
feedback control by using feedback linearization tech-

nique in the past decades, but this method cannot handle
uncertainties in the system. Therefore, all attentions have been
devoted to the methods based on Lyapunov stability theory,
i.e., backstepping and sliding mode control approaches [1]–[6].
Backstepping controller is a well-known approach that system-
atically designs the final control signal via designing virtual
control laws at each step [7], [8]. Although the backstepping
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controller is useful for these systems, the explosion of com-
plexity is a challenging problem in this method. In addition,
sliding mode control requires a mathematical background of
systems with matched and mismatched uncertainties.

To avoid mathematical difficulties of the explosion of com-
plexity, dynamic surface control (DSC) technique has been
employed [9]–[14]. In DSC, differentiators are replaced with
low-pass filters and multiple sliding surfaces [9]. For exam-
ple, in [12], predictor-based neural DSC has been designed for
a class of uncertain nonlinear systems in strict feedback form.

In order to handle uncertainties in nonlinear systems, one
can employ universal approximators such as neural networks,
or fuzzy logic systems (FLSs), which have been recently uti-
lized in several applications, see [15]–[24]. More specifically,
in [18], adaptive fuzzy controllers have been investigated for
a class of uncertain SISO nonlinear systems. Furthermore,
an adaptive fuzzy control for a class of MIMO nonlinear
systems with the aid of feedforward/feedback strategy has been
proposed in [25].

In practice, the system states are often unavailable for
feedback and therefore, and one can use an observer to esti-
mate immeasurable states. Therefore, different structures for
observer design of uncertain nonlinear systems have been
introduced. For example, adaptive neural control based on
estimated states have been presented in [26].

Another point in regards to controlling nonlinear systems
is that the control gain may be unknown in advance
and therefore, it is assumed that the control direction is
known [26], [27]. Nussbaum gain function is a method that
can be useful for designing a controller for systems with
unknown control direction. This method was first proposed
by Nussbaum [28], and it is effective to approximate the
sign of control direction. The Nussbaum function is made
of increasing ultimately function and switching functions,
where, the switching function can obtain the sign of control
direction [26].

Generally speaking, the above-mentioned problems and
considerations are made for systems in strict-feedback form.
However, this can be considered as a limitation for dynamical
systems because many practical systems cannot be represented
in strict-feedback form. In fact, this is a new challenge, and

2168-2216 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3986-8205
https://orcid.org/0000-0001-6315-1058
https://orcid.org/0000-0001-7629-3266


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

if the system has a nonstrict feedback form, the controller
design is harder because in strict-feedback systems, a virtual
control signal αi and uncertain function fi are a function of
x̄i = [x1, x2, . . . , xi]T for i = 1, 2, . . . , n,. However, in non-
strict feedback systems, αi and fi are functions of the state
vector x = [x1, x2, . . . , xn]T , and it makes the problem more
challenging [29]–[32]. Therefore, in recent years, there has
been great attention to this class of nonlinear systems. For
example, in [31], a neuro-adaptive output-feedback controller
has been designed for a class of MIMO nonstrict-feedback
nonlinear time-delay systems.

In many systems, dead-zone nonlinearity is one of the
significant concerns that is a problematic issue and it may
exist in many physical systems and affects on the system
stability [33]–[36]. However, to the best of the authors’
knowledge, no results have been reported for adaptive out-
put feedback fuzzy control of nonstrict feedback systems with
unknown dead zone and unknown control direction, which
motivate us for the current study. Another concern is the con-
straints on the states and output of the system. In order to
prevent these constraints, one can employ barrier Lyapunov
function [37]–[40].

Motivated by the above concerns, this paper presents an
observer-based fuzzy adaptive controller based on DSC tech-
nique for a class of uncertain nonstrict feedback systems with
unmeasured states, unknown control direction, and unknown
dead-zone, with constraints on the output. In the proposed
controller, by using fuzzy logic approximators, unknown non-
linear functions in nonstrict feedback system are estimated
adaptively by using Lyapunov-based adaptation law, and by
utilizing fuzzy state observer, the immeasurable states can
be estimated. Control direction in this system is unknown,
and therefore with the aid of a special Nussbaum function
and the barrier Lyapunov function, an appropriate controller
is designed. It is assumed that the control signal is passed
through a dead-zone function with unknown slopes and the
parameters of the dead-zone nonlinearity are approximated by
using adaptive mechanism. Finally, by combining the proposed
tools and with the aid of DSC, an observer-based adaptive
fuzzy controller for nonstrict systems with unknown dead-
zone and unknown control direction is designed. It is shown
that by using the proposed observer-based fuzzy adaptive
controller, the semi-globally uniformly ultimately bounded-
ness (SGUUB) of signals in the closed-loop system is assured
and the system output tracks the desired signal effectively with
constraints on the output. Moreover, the main contributions of
this paper compared to the existing results are summarized
as follows.

1) An observer-based fuzzy adaptive controller is proposed
using the barrier Lyapunov function for an uncertain
nonstrict nonlinear system with unknown control direc-
tion and unknown dead zone.

2) By employing FLSs, the unknown nonlinearities are
approximated, and a state observer is then designed to
estimate immeasurable states.

3) In order to overcome “explosion of terms” which is
problematic in traditional backstepping approach, DSC
technique is employed, and this technique is combined

with Nussbaum gain utilization to overcome the problem
of the unknown gain sign.

4) In [12] and [22], the unknown nonlinear systems are in
strict feedback form. However, in this paper, an adaptive
controller is designed for an extensive class of nonlinear
systems in nonstrict feedback forms.

5) Although there are numerous results on control
nonlinear systems in the presence of dead-zone
(see [35], [36], and [41]), observer-based adaptive fuzzy
controller for nonstrict-feedback nonlinear systems with
dead-zone, and unknown control direction has not been
investigated yet.

In what follows, the mathematical preliminaries are given in
Section II. The system dynamic and problem formulation are
presented and a fuzzy observer is introduced in Section III.
Section IV explains fuzzy adaptive control design of non-
strict systems and results on the stability conditions are also
discussed in this section. Simulation results are provided in
Section V. Finally, Section VI concludes this paper.

II. MATHEMATICAL PRELIMINARIES

In this section, the mathematical preliminaries that are used
in this paper are given.

A. Nussbaum Function Scheme

Definition 1 [26]: The function N(η) is called Nussbaum
gain function if the following properties are held:

lim
s→∞ sup

1

s

∫ s

0
N(η)dη = +∞ (1)

lim
s→∞ inf

1

s

∫ s

0
N(η)dη = −∞. (2)

Different functions have been introduced that satisfy the
above conditions, e.g., exp(η2) cos([π/2]η), η2 cos(η), and
η2 sin(η). In this paper, exp(η2) cos(η2) has been chosen as
a Nussbaum function.

Lemma 1 [26]: Let N(η) be Nussbaum gain function and η

is assumed to be a smooth function defined on [0, tf ]. Suppose
a positive definite, radially unbounded function V(t) exists that
satisfies the following inequality:

0 ≤ V(t) ≤ V(0) + e−Ct
∫ t

0
d(ρN(η) + 1)η̇eCτ dτ + D (3)

then V(t), η(t), and
∫ t

0 d(ρN(η) + 1)η̇eCτ dτ are bounded on
[0, tf ] where C and D are positive constants, ρ is a nonzero
constant and d is some suitable constant.

B. Barrier Lyapunov Function

Definition 2 [40], [42]: A scalar function Vi(x) is a barrier
Lyapunov function defined relating to the system ẋi = fi(xi)

on an open region Ei including the origin, which is contin-
uous, positive definite, and with continuous first-order partial
derivatives at every point of Ei. In addition, as xi tends to the
boundary of Ei results in Vi(x) → ∞. It also holds the prop-
erty Vi(xi(t)) ≤ bi ∀t ≥ 0 along the solution of ẋi = fi(xi) for
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xi(0) ∈ Ei and some positive constant bi. In this paper, barrier
Lyapunov function is defined as the following function:

V̄1 = 1

2
log

(
K2

K2 − s2
1

)
(4)

where |s1| < K and log(.) stands for the logarithm function
of (.).

Lemma 2: For any positive constant K, where s1 satisfies
|s1| < K, we have the following inequality:

V̄1 = 1

2
log

(
K2

K2 − s2
1

)
<

s2
1

K2 − s2
1

. (5)

C. Fuzzy Logic Approximator System

The FLS contains four parts. These parts include the knowl-
edge base, the fuzzifier, the fuzzy inference engine working on
fuzzy rules, and the defuzzifier [13]. The knowledge base is
a set of If–Then rules in the following form: 	l : If x1 is FL

1 and
x2 is FL

2 and · · · and xn is FL
n , Then y is GL, L = 1, 2, . . . , N

where x = [x1, x2, . . . , xn]T and y are the inputs and output of
the FLSs, respectively, and N is the number of rules.

By using singleton function, center average defuzzification
and product inference [23], the FLS can be expressed as
follows:

y(x) =
∑N

L=1 ȳL
∏n

i=1 μL
Fi

(xi)∑N
L=1

[∏n
i=1 μL

Fi
(xi)

] (6)

where μFL
i

and μGL are fuzzy membership functions asso-

ciated with fuzzy sets FL
i and GL, and ȳL = maxy∈	 μGL(y).

Define the basis function in the FLS as follows:

ϕL(x) =
∏n

i=1 μL
Fi

(xi)∑N
L=1

[∏n
i=1 μL

Fi
(xi)

] . (7)

Denoting θT = [θ1, θ2, . . . , θN] and ϕ(x) =
[ϕ1(x), . . . , ϕN(x)]T , FLS (6) can be stated as follows:

y(x) = θTϕ(x). (8)

Lemma 3 [43]: Suppose f (x) is a continuous function on
a compact set 	. Then, there exists an FLS (8), for any
constant ε > 0 such that

sup
x∈	

∣∣f (x) − θTϕ(x)
∣∣ ≤ ε. (9)

III. PROBLEM DESCRIPTION

Consider a nonstrict nonlinear system with unknown distur-
bances, unknown control direction, and unknown dead-zone
described as follows:⎧⎨

⎩
ẋi = xi+1 + fi(x) + di(t) i = 1, 2, . . . , n − 1
ẋn = ρD(u) + fn(x) + dn(t)
y = x1

(10)

where x = [x1, x2, . . . , xn]T is the state vector, y is the out-
put of the system, and ρ is an unknown constant satisfying
ρmin ≤ |ρ| ≤ ρmax, where ρmin and ρmax are positive con-
stants, fi(x), i = 1, 2, . . . , n are unknown smooth nonlinear
functions, di(t), i = 1, 2, . . . , n are the dynamic disturbances

satisfying | di(t)| ≤ d̄i where d̄i are known constants, D(u)

is the output of the dead-zone nonlinearity described by the
following function:

D(u) =
⎧⎨
⎩

mr(u − dr), if u ≥ dr

0, if −dl < u < dr

ml(u + dl), if u ≤ −dl

(11)

In (11), u ∈ 	 is the input of the dead-zone element, dr and
dl are the dead-zone widths, mr and ml are the slopes of the
dead-zone and these parameters are assumed to be unknown.

The main is to design an adaptive fuzzy DSC for nonstrict
feedback systems such that the system states are bounded and
the output of the system can track the desired signal yr well.

Assumption 1: The reference signal yr and its derivative
yr, ẏr, and ÿr are assumed to be bounded and available for
measurement.

Assumption 2 [23]: The output of dead-zone D(u) is not
available for measurement. The parameters of dead-zone mr,
ml, dr, and dl are unknown, but their signs are known (mr > 0,
ml > 0, dr ≥ 0, and dl ≤ 0).

Assumption 3 [23]: The slopes of the dead-zone are
bounded by known constant, i.e., there exist known constants
mr min, mr max, ml min, and ml max such that 0 < mr min ≤ mr ≤
mr max and 0 < ml min ≤ ml ≤ ml max.

Remark 1: Assumption 1 is common in the literature since
the output of the system and its derivatives are bounded for real
systems. Assumption 2 is reasonable for realistic applications,
because the actuator in a real system has a predefined range of
operation. Therefore, the closed-loop system might be unstable
if this limitation is not considered in the design procedure.

If we assume the system is without a dead-zone and ud is the
input of the plant, the following control signal u is generated
from the equivalence dead-zone inverse:

u = D−1(ud) = ud + d̂mr

m̂r
δ + ud − d̂ml

m̂l
(1 − δ). (12)

In (12), m̂r, m̂l, d̂mr, and d̂ml are estimates of mr, ml, dmr,
dml and

δ =
{

1 if ud ≥ 0
0 if ud < 0.

(13)

The resulting error between the u and ud is obtained as

D(u) − ud =
(

d̃mr − ud + d̂mr

m̂r
m̃r

)
δ

+
(

d̃ml − ud − d̂ml

m̂l
m̃l

)
(1 − δ) + εd (14)

where d̃mr = d∗
mr −d̂mr, d̃ml = d∗

ml −d̂ml, m̃r = m∗
r −m̂r, and

m̃l = m∗
l −m̂l are parameters of error and εd = −m∗

r χr(u −
d∗

r ) − m∗
l χl(u − d∗

l ) is bounded. In addition

χr =
{

1, if 0 ≤ u < dr

0, otherwise
and χl =

{
1, if dl < u < 0
0, otherwise.

(15)

Since the system states may not be available for mea-
surement, an observer should be incorporated to estimate the
unmeasured states. In order to design an appropriate observer,
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at first a suitable change of variable should be employed. Let
χi = (xi/ρ), then system (10) can be represented as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ̇1 = χ2 + F1(χ)
ρ

+ d1(t)
ρ

...

χ̇n = D(u) + Fn(χ)
ρ

+ dn(t)
ρ

y = ρχ1.

(16)

By defining F̄i(χ) = [Fi(χ)/ρ], and d̄i(t) = (di(t)/ρ), i =
1, 2, . . . , n, the system (16) can be rewritten as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

χ̇1 = χ2 + F̄1(χ) + d̄1(t)
...

χ̇n = D(u) + F̄n(χ) + d̄n(t)
y = ρχ1.

(17)

After adding and subtracting new term Kχ1, (17) can be
compressed as follows:

χ̇ = Aχ + Kχ1 +
n∑

i=1

BiF̄i(χ) +  + BnD(u)

y = CTχ , i = 1, 2, . . . , n (18)

where

A =
⎡
⎢⎣

−k1
... I

−kn 0 · · · 0

⎤
⎥⎦, K =

⎡
⎢⎢⎢⎣

k1
k2
...

kn

⎤
⎥⎥⎥⎦

Bi =
[

0 · · · 0 1︸ ︷︷ ︸
i

0 · · · 0
]T

1×n

,  = [d1, d2, . . . , dn]T

CT = [
ρ 0 · · · 0

]
, F̄i = [

F̄1, . . . , F̄n
]T

and χ = [χ1, χ2, . . . , χn]T . The vector K is chosen such that
matrix A is Hurwitz. It means that there exists a positive defi-
nite matrix P > 0, for any given positive definite matrix Q > 0,
such that the following equality holds:

ATP + PA = −2Q. (19)

In (18), F̄i(χ) is unknown. Therefore, by using Lemma 3,
F̄i(χ), i = 1, 2, . . . , n, can be approximated by the following
FLS:

F̂i
(
χ̂ |θi

) = θT
i ϕi(χ̂) (20)

where χ̂ = [χ̂1, . . . , χ̂n]T is the estimate of χ =
[χ1, χ2, . . . , χn]T . The optimal parameter vector θ∗

i is defined
as follows:

θ∗
i = arg min

θi∈	i

[
sup

χ∈U,χ̂∈Û

∣∣∣F̂i
(
χ̂ |θi

) − F̄i
(
χ̂
)∣∣∣
]
. (21)

In (21), 	i, U, and Û are the compact regions for θi, χ ,
and χ̂ , respectively. The approximation errors δi and FLS
minimum approximation errors εi can be defined as

δi = F̄i(χ) − F̂i
(
χ̂ |θi

)
, εi = F̄i(χ) − F̂i

(
χ̂ |θ∗

i

)
i = 1, . . . , n. (22)

In (22), |δi| ≤ δ∗
i and |εi| ≤ ε∗

i that δ∗
i and ε∗

i are
known positive constants. By substituting (22) into (18), it
is rewritten as

χ̇ = Aχ + Kχ1 +
n∑

i=1

Bi

(
F̂i

(
χ̂ |θi

) + δi

)
+  + BnD(u)

y = CTχ , i = 1, 2, . . . , n. (23)

Therefore, the following observer is designed:

˙̂χ = Aχ̂ +
n∑

i=1

BiF̂i
(
χ̂ |θi

) + BnD(u)

ŷ = CT χ̂ , i = 1, 2, . . . , n. (24)

The observation error vector e is defined as

e = [e1, e2, . . . , en]T = χ − χ̂ . (25)

By using (23), (24), and observation error (25), the follow-
ing observer error dynamic is obtained:

ė = Ae + Kχ1 +
n∑

i=1

Biδi +  (26)

where δi = [δ1, δ2, . . . , δn]T .
In this part, the Lyapunov function V0 = (1/2)eTPe is intro-

duced, where P = PT > 0 is a positive definite matrix, and
by utilizing (19) and (26), we have

V̇0 = sym

(
1

2
(Ae + δ +  + Kχ1)

TPe

)

= 1

2
eT (

ATP + PA
)

︸ ︷︷ ︸
−2Q

e + eTP(δ + ) + eTPKχ1 (27)

where sym(∗) denotes (∗) + (∗)T .
In addition, the following inequality is true for a positive

definite matrix Q:

λmin(Q)‖e‖2 ≤ eTQe ≤ λmax(Q)‖e‖2. (28)

By using Young’s inequalities, one can obtain

eTP( + δ) ≤ ‖e‖2 + ‖P‖2

2

∥∥δ∗∥∥2 + ‖P‖2

2

∑
d̄2

i . (29)

By using inequalities (28) and (29), (27) can be expressed
as follows:

V̇0 ≤ −(λmin(Q) − 1)‖e‖2 + M1 + eTPKχ1 (30)

where M1 = (1/2)‖P‖2‖δ∗‖2 +(1/2)‖P‖2 ∑n
i=1 d̄2

i , that M1 is
a positive constant. It is noticeable that the last inequality (30)
is used later for stability proof of the designed controller.

IV. ADAPTIVE FUZZY CONTROL DESIGN

AND STABILITY ANALYSIS

In this section, by using an adaptive fuzzy scheme and
employing DSC approach, a suitable controller with adaptive
laws is designed. It will be shown that the SGUUB of all the
signals of the closed-loop system is achieved, and also the
output of the system tracks the reference signal. In order to
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design DSC, it is necessary to recursively follow the proce-
dure in n-step. At first, the following change of coordinate is
considered:

s1 = y − yr

si = χ̂i − zi, i = 2, 3, . . . , n

wi = zi − αi−1 (31)

where si is the error surface, yr is the desired signal for track-
ing, αi−1 are the virtual control, zi is a state variable that it is
achieved by using a first-order filter on control function αi−1
and wi is the output error of this filter.

Step 1: From (31), we get

ṡ1 = ẏ − ẏr = ρχ2 + F1(χ) + d1 − ẏr. (32)

By substituting (21) and (22) in (32), and by defining the
error e2 = χ2 − χ̂2, s2 = χ̂2 − z2, and w2 = z2 − α1 one can
obtain

ṡ1 = ẏ − ẏr = ρχ2 + F1(χ) + d1 − ẏr

= ρ
(
e2 + χ̂2

) + ρε1 + ρθ∗T

1 ϕ1(χ̂) + d1 − ẏr

= ρ
(
e2 + χ̂2 + ε1

) + ρθ̃T
1︸︷︷︸

θ̃T
g1

ϕ1
(
χ̂
) + ρθT

1︸︷︷︸
θT

g1

ϕ1
(
χ̂
) + d1 − ẏr

= ρ(e2 + s2 + w2 + α1 + ε1) + ρθ̃T
1︸︷︷︸

θ̃T
g1

ϕ1
(
χ̂
)

+ ρθT
1︸︷︷︸

θT
g1

ϕ1
(
χ̂
) + d1 − ẏr (33)

where θ̃ = θ∗ − θ and χ = [χ1, χ2, . . . , χn]T .
Consider the following Lyapunov function candidate:

V1 = V0 + V̄1 + 1

2γ1
θ̃T

g1
θ̃g1

= V0 + 1

2
log

K2

K2 − s2
1

+ 1

2γ1
θ̃T

g1
θ̃g1 (34)

where γ1 and K are the positive design constants, and V̄1 is
a barrier Lyapunov function defined in (4).

By calculating the time derivative of V1, and using the
previous results we have

V̇1 ≤ −(λmin(Q) − 1)‖e‖2 + M1 + eTPKχ1 + s1ṡ1

K2 − s2
1

+ 1

γ1
θ̃T

g1

˙̃
θg1 ≤ −(λmin(Q) − 1)‖e‖2

+ s1

K2 − s2
1

⎛
⎜⎝ρ

⎛
⎜⎝e2 + ε1︸ ︷︷ ︸

{1}
+ s2 + w2︸ ︷︷ ︸

{2}
+α1

⎞
⎟⎠ + θ̃T

g1
ϕ1

(
χ̂
)

+ θT
g1

ϕ1
(
χ̂
) + d1︸︷︷︸

{3}
−ẏr

⎞
⎟⎠

+ 1

γ1
θ̃T

g1

˙̃
θg1 + eTPKχ1︸ ︷︷ ︸

{4}
+M1. (35)

In addition, by using the Young’s inequalities, the following
inequality is true corresponding to the part including term {1}:

s1

K2 − s2
1

ρe2 + s1

K2 − s2
1

ρε1 ≤ 1

2
‖e‖2 + 1

2

s2
1(

K2 − s2
1

)2
ρ2

max

+ 1

2

s2
1(

K2 − s2
1

)2
+ 1

2
ρ2

max

∥∥ε∗
1

∥∥2
.

(36)

In addition, the same expression can be stated for term
which includes {2} as

s1

K2 − s2
1

ρs2 + s1

K2 − s2
1

ρw2 ≤ s2
1

2
(
K2 − s2

1

)2
+ 1

2
ρ2

maxs2
2

+ s2
1

2
(
K2 − s2

1

)2
ρ2

max + 1

2
w2

2.

(37)

Using the same fashion, we may write the following
inequalities for managing terms including {3} and {4} in (35)

s1

K2 − s2
1

d1 ≤ s2
1

2
(
K2 − s2

1

) + 1

2

∥∥d̄1
∥∥2

(38)

eTPKχ1 ≤ 1

2
‖e‖2‖P‖2 + 1

2

‖K‖2y2

ρmin
≤ 1

2
‖e‖2‖P‖2

+ ‖K‖2s2
1

2ρmin
+ ‖K‖2y2

r

2ρ2
min

+ ‖K‖4y2
r

2ρ4
min

+ 1

2
s2

1. (39)

Substituting (36)–(39) into (35), yields

V̇1 ≤ −(λmin(Q) − 1)‖e‖2 + M1 + 1

2
‖e‖2

+ 1

2

s2
1(

K2 − s2
1

)2
ρ2

max + 1

2
ρ2

max

∥∥ε∗
1

∥∥2 + 3s2
1

2(K2 − s2
1)

2

+ 1

2
ρ2

maxs2
2 + s2

1

2
(
K2 − s2

1

)2
ρ2

max + 1

2
w2

2 + 1

2

∥∥d̄1
∥∥2

+ s1

K2 − s2
1

(
ρα1 − ẏr + θT

g1
ϕ1

(
χ̂
))

+ 1

γ1
θ̃T

g1

(
γ1s1

K2 − s2
1

ϕ1
(
χ̂
) − θ̇g1

)
+ 1

2
‖e‖2‖P‖2

+ ‖K‖2s2
1

2ρmin
+ ‖K‖2y2

r

2ρ2
min

+ ‖K‖4y2
r

2ρ4
min

+ 1

2
s2

1. (40)

Therefore,

V̇1 ≤ −
(

λmin(Q) − 3

2
− ‖P‖2

2

)
‖e‖2 + M2

+ s1

K2 − s2
1

(
ρα1 + s1

K2−s2
1
ρ2

max + 3s1
2
(
K2−s2

1

)
−ẏr + θT

g1
ϕ1

(
χ̂
)

)

+ 1

γ1
θ̃T

g1

(
γ1s1

K2 − s2
1

ϕ1
(
χ̂
) − θ̇g1

)
+ 1

2
ρ2

maxs2
2

+ 1

2
w2

2 + ‖K‖2s2
1

2ρmin
+ 1

2
s2

1 (41)

where M2 = M1 + (1/2)ρmax‖ε∗
1‖2 + (1/2)‖d̄1‖2 +

[(‖K‖2y2
r )/(2ρ2

min)] + [(‖K‖4y2
r )/(2ρ4

min)].
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Since control coefficient is unknown, the virtual control
law described by Nussbaum function and adaptation laws are
obtained as follows:

α1 = N(η)

⎛
⎝ c1s1 + s1

K2−s2
1
ρ2

max + 3s1
2
(
K2−s2

1

) − ẏr

+θT
g1

ϕ1
(
χ̂
) + ‖K‖2(K2−s2

1

)
2ρmin

s1 + s1
(
K2−s2

1

)
2

⎞
⎠ (42)

θ̇g1 = γ1s1

K2 − s2
1

ϕ1
(
χ̂
) − σ1θg1 θg1(0) = 0 (43)

η̇ = s1

d
(
K2 − s2

1

)
⎛
⎜⎜⎝

c1s1 + s1
K2−s2

1
ρ2

max + 3s1
2
(
K2−s2

1

)

−ẏr + θT
g1

ϕ1
(
χ̂
) + ‖K‖2(K2−s2

1

)
2ρmin

s1

+ s1
(
K2−s2

1

)
2

⎞
⎟⎟⎠ (44)

where c1, σ1, and d are positive constants parameters to be
designed.

By substituting (42)–(44) into (41), one can get

V̇1 ≤ −
(

λmin

(
Q − 3

2
− ‖P‖2

2

))
‖e‖2 + M2 − c1s2

1

K2 − s2
1

+ 1

2
ρ2

maxs2
2 + 1

2
w2

2 + d(ρN(η) + 1)η̇ + σ1

γ1
θ̃T

g1
θg1 .

(45)

It is noticeable that, α1 must be passed through a first-
order filter with dynamic z2 and time constant of the filter
is τ2. This technique avoids the explosion of complexity in
the backstepping technique

τ2ż2 + z2 = α1 z2(0) = α1(0). (46)

By defining w2 = z2 − α1, the following relations are
obtained:

ż2 = −w2

τ2
⇒ ẇ2 = ż2 − α̇1 = −w2

τ2
+ B2(.) (47)

where τ2 > 0 and B2(.) is a function of s1, s2, w2, θg1 , yr, ẏr,
and ÿr.

Step 2: Considering s2 = χ̂2 − z2 and by using ˙̂χ2 = χ̂3 −
k2χ̂1 + θT

2 ϕ2(χ̂), the derivative of s2 is

ṡ2 = ˙̂χ2 − ż2 = χ̂3 − k2χ̂1 + θT
2 ϕ2

(
χ̂
) − ż2. (48)

Consider the following Lyapunov function V2:

V2 = V1 + 1

2
s2

2 + 1

2
w2

2 + 1

2γ2
θ̃T

2 θ̃2 (49)

where γ2 > 0 is a design parameter. By using (45), the
derivative of V2 along the time is obtained as follows:

V̇2 ≤ −
(

λmin(Q) − 3

2
− ‖P‖2

2

)
‖e‖2 + M2 − c1s2

1

K2 − s2
1

+ 1

2
ρ2

maxs2
2 + 1

2
w2

2 + d(ρN(η) + 1)η̇ + σ1

γ1
θ̃T

g1
θg1

+ s2

⎛
⎜⎝ χ̂3︸︷︷︸

{5}
−k2χ̂1 + θT

2 ϕ2
(
χ̂
) − ż2

⎞
⎟⎠

+ w2

(
−w2

τ2
+ B2(.)

)

+ 1

γ2
θ̃T

2

(
γ2s2ϕ2

(
χ̂
) − θ̇2

) + ∣∣s2β
∗
2

∣∣︸ ︷︷ ︸
{6}

. (50)

In order to simplify (50), the following inequality is used:

|x| − x tanh

(
x

ς

)
≤ 0.2785ς = ς ′, ς > 0. (51)

Therefore, in (50), by substituting s3 = χ̂3−z3, w3 = z3−α2
in {5} and using inequality (51) for managing term {6}, one
can write

V̇2 ≤ −
(

λmin(Q) − 3

2
− ‖P‖2

2

)
‖e‖2 + M2 − c1s2

1

K2 − s2
1

+ d(ρN(η) + 1)η̇ + σ1

γ1
θ̃T

g1
θg1

+ s2

[
s3 + w3 + α2 − k2χ̂1 + θT

2 ϕ2
(
χ̂
) − ż2

+ 1

2
ρ2

maxs2 + β∗
2 tanh

(
s2β

∗
2

ς

)]
+ ς ′

+ 1

2
w2

2 − w2
2

τ2
+ w2B2(.) + 1

γ2
θ̃T

2

(
γ2s2ϕ2

(
χ̂
) − θ̇2

)
(52)

where γ2, ς , and β∗
2 are the positive design constants.

In this step, the virtual control law and adaptation laws are
obtained from the following relations:

α2 = −c2s2 + k2χ̂1 − θT
2 ϕ2

(
χ̂
) − 1

2
ρ2

maxs2

− β∗
2 tanh

(
s2β

∗
2

ς

)
+ ż2 (53)

θ̇2 = γ2s2ϕ2
(
χ̂
) − σ2θ2 θ2(0) = 0 (54)

where c2 and σ2 are the positive design constants.
Substituting (53) and (54) into (52), yields

V̇2 ≤ −
(

λmin(Q) − 3

2
− ‖P‖2

2

)
‖e‖2 + M3 − c1s2

1

K2 − s2
1

+ d(ρN(η) + 1)η̇ + σ1

γ1
θ̃T

g1
θg1 + σ2

γ2
θ̃T

2 θ2 + s2(s3 + w3)

+ w2
2

(
1

2
− 1

τ2

)
+ w2B2(.) − c2s2

2 (55)

where M3 = M2 + ς ′. It should be noted that α2 must be
passed through a first-order filter with dynamic z3 and time
constant τ3

τ3ż3 + z3 = α2 z3(0) = α2(0). (56)

Define w3 = z3 − α2, then we have

ż3 = −w3

τ3
⇒ ẇ3 = ż3 − α̇2 = −w3

τ3
+ B3(.) (57)

where τ3 > 0 and B3(.) is a function of variables s1, s2, s3,
w2, w3, θg1 , θ2, yr, ẏr, and ÿr.

Step i: We consider si = χ̂i − zi, 3 ≤ i ≤ n−1 and by using˙̂χi = χ̂i+1 − kiχ̂1 + θT
i ϕi(χ̂) the derivative of si is obtained as

follows:

ṡi = ˙̂χi − żi = χ̂i+1 − kiχ̂1 + θT
i ϕi

(
χ̂
) − żi. (58)

By using si+1 = χ̂i+1 − zi+1 and wi+1 = zi+1 − αi, (58) is
written as

ṡi = χ̂i+1 − kiχ̂1 + θT
i ϕi

(
χ̂
) − żi

= si+1 + wi+1 + αi − kiχ̂1 + θT
i ϕi

(
χ̂
) − żi. (59)
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Analogously to the previous steps, αi is passed through the
first-order filter with time constant τi+1 and dynamic zi+1

τi+1żi+1 + zi+1 = αi zi+1(0) = αi(0). (60)

By using wi+1 = zi+1 − αi, one can get the following
equations:

żi+1 = −wi+1

τi+1
⇒ ẇi+1 = żi+1 − α̇i = −wi+1

τi+1
+ Bi+1(.)

(61)

where τi+1 > 0 and Bi+1(.) is a function of vari-
ables s1, s2, . . . , si+1, w2, w3, . . . , wi+1, θg1 , θ2, . . . , θi, yr, ẏr,
and ÿr.

Define the following Lyapunov function candidate Vi:

Vi = Vi−1 + 1

2
s2

i + 1

2
w2

i + 1

2γi
θ̃T

i θ̃i (62)

where γi > 0 is a design parameter. The time derivative of Vi

is obtained, and following the previous steps we have:

V̇i ≤ −
(

λmin(Q) − 3

2
− ‖P‖2

2

)
‖e‖2 + Mi−1

− c1s2
1

K2 − s2
1

−
i−1∑
k=2

cks2
k + d(ρN(η) + 1)η̇ + σ1

γ1
θ̃T

g1
θg1

+
i−1∑
k=2

σk

γk
θ̃T

k θk +
i−1∑
k=2

sksk+1 +
i−1∑
k=2

skwk+1 + 1

2
w2

2

−
i−1∑
k=2

(
1

τk
w2

k − wkBk(.)

)

+ si
(
si+1 + wi+1 + αi − kiχ̂1 + θT

i ϕi
(
χ̂
) − żi

)

+ ∣∣siβ
∗
i

∣∣ − 1

τi
w2

i + wiBi(.) + 1

γi
θ̃T

i

(
γisiϕi(χ̂) − θ̇i

)
(63)

where ci, γi, σi, and β∗
i , 3 ≤ i ≤ n−1, are the positive design

constants.
In this step, the virtual control law and adaptation laws are

obtained as follows:

αi = −cisi + kiχ̂1 − θT
i ϕi

(
χ̂
) − β∗

i tanh

(
siβ

∗
i

ς

)
+ żi (64)

θ̇i = γisiϕi
(
χ̂
) − σiθi θi(0) = 0. (65)

By substituting (64) and (65) into (63), it is obtained

V̇i ≤ −
(

λmin(Q) − 3

2
− ‖P‖2

2

)
‖e‖2 + Mi − c1s2

1

K2 − s2
1

−
i∑

k=2

cks2
k + d(ρN(η) + 1)η̇ + σ1

γ1
θ̃T

g1
θg1

+
i∑

k=2

σk

γk
θ̃T

k θk +
i∑

k=2

sksk+1 +
i∑

k=2

skwk+1 + 1

2
w2

2

−
i∑

k=2

(
1

τk
w2

k − wkBk(.)

)
(66)

where Mi = Mi−1 + ς ′ and Bk(.) is a function of vari-
ables s1, s2, . . . , sk+1, w2, w3, . . . , wk+1 θg1 , θ2, . . . , θk, yr, ẏr,
and ÿr.

Step n: In this step, the actual control law ud appears. This
step is a final step. Consider sn = χ̂n − zn, and since ˙̂χn =
−knχ̂1 + θT

n ϕn(χ̂) + D(u), the derivative of si is

ṡn = ˙̂χn − żn = −knχ̂1 + θT
n ϕn

(
χ̂
) + D(u) − żn. (67)

By using (6), sn = χ̂n − zn and wn = zn − αn−1, (67) is
expressed as

ṡn = ˙̂χn − żn = −knχ̂1 + θT
n ϕn

(
χ̂
) + D(u) − żn = −knχ̂1

+ θT
n ϕn

(
χ̂
) + ud +

(
d̃mr − ud + d̂mr

m̂r
m̃r

)
δ(t)

+
(

d̃ml − ud − d̂ml

m̂l
m̃l

)
(1 − δ(t)) + εd − żn. (68)

In this stage, the following ultimate Lyapunov function is
considered:

V = Vn−1 + 1

2
s2

n + 1

2
w2

n + 1

2γn
θ̃T

n θ̃n + 1

2ζ1
m̃2

l

+ 1

2ζ2
m̃2

r + 1

2ζ3
d̃2

ml + 1

2ζ4
d̃2

mr (69)

where γn > 0, ζ1 > 0, ζ2 > 0, ζ3 > 0, and ζ4 > 0 are design
parameters. The time derivative of V is obtained as

V̇ ≤ −
(

λmin(Q) − 3

2
− ‖P‖2

2

)
‖e‖2 + Mn−1 − c1s2

1

K2 − s2
1

−
n−1∑
k=2

cks2
k + d(ρN(η) + 1)η̇ + σ1

γ1
θ̃T

g1
θg1

+
n−1∑
k=2

σk

γk
θ̃T

k θk +
n−1∑
k=2

sksk+1 +
n−1∑
k=2

skwk+1 + 1

2
w2

2

−
n−1∑
k=2

(
1

τk
w2

k − wkBk(.)

)

+ sn

[
− knχ̂1 + θT

n ϕn
(
χ̂
) + ud

+
(

d̃mr − ud + d̂mr

m̂r
m̃r

)
δ(t)

+
(

d̃ml − ud − d̂ml

m̂l
m̃l

)
(1 − δ(t)) + εd − żn

]

+ wn

(
−wn

τn
+ Bn(.)

)
+ 1

γn
θ̃T

n

(
γnsnϕn

(
χ̂
) − θ̇n

) + ∣∣siβ
∗
i

∣∣

+ 1

ζ1
m̃l ˙̃ml + 1

ζ2
m̃r ˙̃mr + 1

ζ3
d̃ml

˙̃dml + 1

ζ4
d̃mr

˙̃dmr. (70)

Therefore,

V̇ ≤ −
(

λmin(Q) − 3

2
− ‖P‖2

2

)
‖e‖2 + Mn−1 − c1s2

1

K2 − s2
1

−
n−1∑
k=2

cks2
k + d(ρN(η) + 1)η̇ + σ1

γ1
θ̃T

g1
θg1 +

n−1∑
k=2

σk

γk
θ̃T

k θk
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+
n−1∑
k=2

sksk+1 +
n−1∑
k=2

skwk+1 + 1

2
w2

2

−
n−1∑
k=2

(
1

τk
w2

k − wkBk(.)

)

+ 1

ζ1
m̃l

(
˙̃ml − ζ1

ud − d̂ml

m̂l
sn(1 − δ(t))

)

+ 1

ζ2
m̃r

(
˙̃mr − ζ2

ud + d̂mr

m̂r
snδ(t)

)

+ 1

ζ3
d̃ml

( ˙̃dml + ζ3sn(1 − δ(t))
)

+ 1

ζ4
d̃mr

( ˙̃dmr + ζ4snδ(t)
)

+ sn

[
− knχ̂1 + θT

n ϕn
(
χ̂
) − żn + ud + εd

+ β∗
n tanh

(
snβ

∗
n

ς

)]
+ ς ′

+ wn

(
−wn

τn
+ Bn(.)

)
+ 1

γn
θ̃T

n

(
γnsnϕn

(
χ̂
) − θ̇n

)
(71)

where β∗
n > 0 is a constant design parameter.

In this step, the actual control law and corresponding
adaptation laws are obtained as

ud = −cnsn − 1

2
sn + knχ̂1 − θT

n ϕn
(
χ̂
) + żn

− β∗
n tanh

(
snβ

∗
n

ς

)
(72)

θ̇n = γnsnϕn
(
χ̂
) − σnθn, θ2(0) = 0 (73)

˙̃dml = −ζ3sn(1 − δ(t)) + a3d̂ml (74)
˙̃dmr = −ζ4snδ(t) + a4d̂mr (75)

˙̃ml = ζ1
ud − d̂ml

m̂l
sn(1 − δ(t)) + a1m̂l (76)

˙̃mr = ζ2
ud + d̂mr

m̂r
snδ(t) + a2m̂r (77)

where cn, σn, a1, a2, a3, and a4 are the positive design
constants. By using the following inequality:

snεd ≤ 1

2
s2

n + 1

2
‖ε̄d‖2 (78)

and substituting (72)–(78) into (71), yields

V̇ ≤ −
(

λmin(Q) − 3

2
− ‖P‖2

2

)
‖e‖2 − c1s2

1

K2 − s2
1

−
n∑

k=2

cks2
k

+ d(ρN(η) + 1)η̇ + σ1

γ1
θ̃T

g1
θg1︸ ︷︷ ︸

{7}

+
n∑

k=2

σk

γk
θ̃T

k θk︸︷︷︸
{8}

+
n−1∑
k=2

sksk+1︸ ︷︷ ︸
{9}

+
n−1∑
k=2

skwk+1︸ ︷︷ ︸
{10}

+1

2
w2

2 + a1

ζ1
m̃lm̂l︸︷︷︸
{11}

+a2

ζ2
m̃rm̂r︸ ︷︷ ︸
{12}

+ a3

ζ3
d̃mld̂ml︸ ︷︷ ︸

{13}
+a4

ζ4
d̃mrd̂mr︸ ︷︷ ︸

{14}
+Mn −

n∑
k=2

⎛
⎜⎝ 1

τk
w2

k − wkBk(.)︸ ︷︷ ︸
{15}

⎞
⎟⎠

(79)

where, Mn = Mn−1 + ς ′ + (1/2)‖ε̄d‖2.

In addition, by using the Young’s inequalities, the terms
{7} and {8} in (79) can be written as follows:

θ̃T
g1

θg1 = θ̃T
g1

(
θ∗

g1
− θ̃g1

)
≤ −1

2
θ̃T

g1
θ̃g1 + 1

2
θ∗T

g1
θ∗

g1
(80)

θ̃T
k θk ≤ −1

2
θ̃T

k θ̃k + 1

2
θ∗T

k θ∗
k , k = 2, . . . , n (81)

and similarly, this is also true for terms {9} and {10} as

sksk+1 ≤ 1

2
s2

k + 1

2
s2

k+1 ⇒
n−1∑
k=2

sksk+1 ≤
n−1∑
k=2

1

2
s2

k + 1

2
s2

k+1

=
(

1

2
s2

2 + · · · + 1

2
s2

n−1

)

+
(

1

2
s2

3 + · · · + 1

2
s2

n−1 + 1

2
s2

n

)
(82)

skwk+1 ≤ 1

2
s2

k + 1

2
w2

k+1 ⇒
n−1∑
k=2

skwk+1 ≤
n−1∑
k=2

1

2
s2

k + 1

2
w2

k+1

=
(

1

2
s2

2 + · · · + 1

2
s2

n−1

)

+
(

1

2
w2

3 + · · · + 1

2
w2

n−1 + 1

2
w2

n

)
. (83)

Using the same procedure, the terms {11}–{14} can be
stated as follows:

m̃lm̂l = m̃l
(
m∗

l − m̃l
) ≤ −1

2
m̃2

l + 1

2
m∗2

l (84)

m̃rm̂r = m̃r
(
m∗

r − m̃r
) ≤ −1

2
m̃2

r + 1

2
m∗2

r (85)

d̃mld̂ml = d̃ml

(
d∗

ml − d̃ml

)
≤ −1

2
d̃2

ml + 1

2
d∗2

ml (86)

d̃mrd̂mr = d̃mr

(
d∗

mr − d̃mr

)
≤ −1

2
d̃2

mr + 1

2
d∗2

mr. (87)

In addition for term {15} one can write

wkBk(.) ≤ |Bk(.)wk| (88)

|Bk(.)wk| ≤ w2
kB2

k(.)

2π
+ 2π, π > 0 (89)

where π > 0 is a design parameter and substituting (80)–(89)
into (79), one can write

V̇ ≤ −(λmin(Q) − q)‖e‖2 − c1s2
1

K2 − s2
1

−
n∑

k=2

(
ck − 3

2

)
s2

k

− 1

2
s2

2 − s2
n + d(ρN(η) + 1)η̇ − σ1

2γ1
θ̃T

g1
θ̃g1 + σ1

2γ1
θ∗T

g1
θ∗

g1

−
n∑

k=2

σk

2γk
θ̃T

k θk +
n∑

k=2

σk

2γk
θ∗T

k θ∗
k

−
n∑

k=2

(
1

τk
− 1

2
− B2

k(.)

2π

)
w2

k + 2π(n − 1) − a1

2ζ1
m̃2

l

+ a1

2ζ1
m∗2

l − a2

2ζ2
m̃2

r + a2

2ζ2
m∗2

r − a3

2ζ3
d̃2

ml + a3

2ζ3
d∗2

ml

− a4

2ζ4
d̃2

mr + a4

2ζ4
d∗2

mr + Mn (90)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHOJAEI et al.: OBSERVER-BASED FUZZY ADAPTIVE DSC OF UNCERTAIN NONSTRICT FEEDBACK SYSTEMS 9

where q = (3/2) + (‖P‖2/2). Let

A′ =
{

n∑
k=3

s2
k + 1

γ1
θ̃T

g1
θ̃g1 +

n∑
k=2

1

γk
θ̃T

k θk +
n∑

k=2

w2
k + eT Pe ≤ 2p

}
.

Therefore, Bk is a continuous function and there exists a pos-
itive constant Hk in the compact set A′ such that |Bk(.)| ≤ Hk

on A′. Therefore, (90) can be rewritten in the following form:

V̇ ≤ −(λmin(Q) − q)‖e‖2 − c1s2
1

K2 − s2
1

−
n∑

k=2

(
ck − 3

2

)
s2

k

− 1

2
s2

2 − s2
n + d(ρN(η) + 1)η̇ − σ1

2γ1
θ̃T

g1
θ̃g1

−
n∑

k=2

σk

2γk
θ̃T

k θk −
n∑

k=2

(
1

τk
− 1

2
− H2

k (.)

2π

)
w2

k − a1

2ζ1
m̃2

l

− a2

2ζ2
m̃2

r − a3

2ζ3
d̃2

ml − a4

2ζ4
d̃2

mr + D (91)

where

D = σ1

2γ1
θ∗T

g1
θ∗

g1
+

n∑
k=2

σk

2γk
θ∗T

k θ∗
k + a1

2ζ1
m∗2

l + a2

2ζ2
m∗2

r

+ a3

2ζ3
d∗2

ml + a4

2ζ4
d∗2

mr + Mn + 2π(n − 1).

The parameters Q, ck, τk, k = 2, . . . , n can be designed such
that λmin(Q) − q > 0, ck − (3/2) > 0, (1/τk) − (1/2) −
(H2

k (.)/2π) > 0 for k = 2, . . . , n. In addition, from (5), we
have

− c1s2
1

K2 − s2
1

< −c1 log

(
s2

1

K2 − s2
1

)
. (92)

Let

C = min

{
2
(λmin(Q) − q)

λmin(P)
, 2c1, 2

(
ck − 3

2

)
,
σ1

γ1
,
σk

γk

2

(
1

τk
− 1

2
− H2

k (.)

2π

)
,

a1

ζ1
,

a2

ζ2
,

a3

ζ3
,

a4

ζ4

}

k = 2, . . . , n.

Consequently, (91) is expressed as follows:

V̇ ≤ −CV + d(ρN(η) + 1)η̇ + D. (93)

Therefore,

d

dt

(
VeCt

)
= d(ρN(η) + 1)η̇eCt + DeCt. (94)

Integrating (94) from both sides yields

VeCt =
∫ t

0
d(ρN(η) + 1)η̇eCtdt +

∫ t

0
DeCtdt. (95)

Following Lemma 1,
∫ t

0 d(ρN(η)+1)η̇eCτ dτ is bounded on
[0, tf ]. Therefore, defining Dmax = maxt∈[0,tf ]

∫ t
0 d(ρN(η) +

1)η̇eCτ dτ , (94) can be expressed as

0 ≤ V(t) ≤
(

Dmax + V(0) − D

C

)
e−Ct + D

C
(96)

where (D/C), can be arbitrarily small [41].

Equation (96) shows that all the signals of the closed-loop
system are SGUUB, and |y − yr| ≤ √

2V(0)e−Ct + √
2D′/C.

This means that |y − yr| is bounded, but it does not converge
to zero.

Based on the above formulation, we can finally state the
following theorem.

Remark 2: The parameter selection recommendation for the
DSC adaptive fuzzy backstepping design is given as follows.
Select design parameters appropriately such that λmin(Q)−q >

0, ck − (3/2) > 0, (1/τk) − (1/2) − (H2
k (.)/2π) > 0,

then determine actual control law, virtual control law, and
adaptive tuning law accordingly. These parameters guaran-
tee the stability of the overall system. Moreover, from |y −
yr| ≤ √

2V(0)e−Ct + √
2D′/C, we can conclude that by

increasing C, or decreasing D′ (which is related to design
parameters), we can make the tracking error y − yr smaller.
Nevertheless, it causes the magnitude of the control signal
is larger. Subsequently, in practical control systems, a trade-
off between control signal magnitude and the tracking error
should be considered.

Remark 3: Since the proposed approach is in general form
and contains a wide class of nonlinear systems, it can be
applied to strict feedback form systems as well. In fact, if
the system is represented in strict feedback form, the method
presented in this paper can handle such systems with dead-
zone, unavailability of the system states, unknown control
direction, and output constraint.

Theorem 1: Consider an uncertain nonlinear nonstrict
system (10) with unknown input dead-zone and disturbances.
Under Assumptions 1–3, and using the control law (12) based
on (72), and adaptation laws (74)–(72) for dead-zone, and
adaptation laws given for each step, then the proposed adaptive
fuzzy nonlinear controller based on observer dynamics (24),
guarantees the closed-loop states are bounded and the tracking
error is SGUUB.

Proof: Following each step of the design based on the
proposed DSC method for the nonstrict system (10), the proof
is straightforward and is concluded after step n of the design
procedure.

V. SIMULATION RESULTS

In this section, the effectiveness of the proposed method
and is evaluated by a simulation example.

Consider the following nonstrict nonlinear system with
unknown control direction:

⎧⎨
⎩

ẋ1 = x2 + f1(x1, x2) + d1(t)
ẋ2 = ρD(u) + f2(x1, x2) + d2(t)
y = x1

(97)

where f1(x1, x2) = 0.1(x1 + x2), f2(x1, x2) = x1x2, d1(t) =
0.1 sin(t), d2(t) = 0.1 cos (t), the signal reference is yr(t) =
sin (t). The parameters of dead-zone are mr = 2, ml = 1.3,
dr = 0.4, dl = −0.6, and membership functions are chosen as

μFl
i

(
x̂i
) = exp

[
−

(
x̂i − 6 + 2l

)
2

]
, l = 1, 2, . . . , 6. (98)
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Define fuzzy basis function as follows:

ϕi,l
(
x̂1, x̂2

) =
μFl

i

(
x̂1

)
μFl

i

(
x̂2

)
∑5

l=1 μFl
1

(
x̂1

)
μFl

2

(
x̂2

) , l = 1, 2, . . . , 6 i = 1, 2

(99)

and the FLS is

f̂i
(
x̂1, x̂2|θi

) = θT
i ϕi

(
x̂1, x̂2

)
, i = 1, 2. (100)

The virtual control law α1, actual control law ud, and
adaption laws are determined as

α1 = N(η)

(
c1s1 + s1

K2 − s2
1

ρ2
max + 3s1

2
(
K2 − s2

1

) − ẏr

+ θT
g1

ϕ1
(
χ̂
) + ‖K‖2(K2 − s2

1

)
2ρmin

s1 + s1
(
K2 − s2

1

)
2

)

(101)

θ̇g1 = γ1s1

K2 − s2
1

ϕ1
(
χ̂
) − σ1θg1 , θg1(0) = 0 (102)

η̇ = s1

d
(
K2 − s2

1

)

×
(

c1s1 + s1

K2 − s2
1

ρ2
max + 3s1

2(K2 − s2
1)

− ẏr

+ θT
g1

ϕ1
(
χ̂
) + ‖K‖2(K2 − s2

1

)
2ρmin

s1 + s1
(
K2 − s2

1

)
2

)

(103)

ud = −c2s2 − 1

2
s2 + k2χ̂1 − θT

2 ϕ2
(
χ̂
) + ż2 − β∗

2 tanh

(
s2β

∗
2

ς

)

(104)

θ̇2 = γ2s2ϕ2
(
χ̂
) − σ2θ2, θ2(0) = 0 (105)

˙̂ml = −ζ1
ud − d̂ml

m̂l
s2(1 − δ(t)) − a1m̂l (106)

˙̂mr = −ζ2
ud + d̂mr

m̂r
s2δ(t) − a2m̂r (107)

˙̂dml = ζ3s2(1 − δ(t)) − a3d̂ml (108)
˙̂dmr = ζ4s2δ(t) − a4d̂mr. (109)

In addition, the design parameters are chosen as

k1 = 0.1, k2 = 0.6, c1 = 20, c2 = 5, d = 0.04, K = 2

ρmin = 1, ρmax = 3, γ1 = 2 γ2 = 2, σ1 = 10, σ2 = 10

β∗
n = 0.5, ς = 5, ζ1 = 6, ζ2 = 10, ζ3 = 6, ζ4 = 2

a1 = 2, a2 = 1, a3 = 3, a4 = 2, ρ = ±2.

Besides, the initial conditions are selected as

(x1(0), x2(0)) = (0.2,−0.2)(
m̂r(0), m̂l(0), d̂mr(0), d̂ml(0)

)
= (1.5, 1.5, 1.5, 1.5)(

X̂1(0), X̂2(0)
)

= (0.1, 0.1)

and other initial values are chosen as zero.
The simulation results are carried out for two different

gain signs to show the efficiency of the proposed approach.
Figs. 1–3 are illustrated for ρ = −2 and Figs. 4 and 5 are

Fig. 1. Output y and the reference signal yr for ρ = −2.

Fig. 2. Control input for ρ = −2.

Fig. 3. Adaptive parameters for dead-zone nonlinearity: (a) m̂r , (b) m̂l,
(c) d̂ml, and (d) d̂mr for ρ = −2.

illustrated for ρ = 2. As it is seen from Fig. 1, one can con-
clude that the output signal can track the reference trajectory
with bounded error considering the boundedness of the output
signal. In addition, the output is constrained by a predefined
bound.

The control signal for this case is demonstrated in Fig. 2.
It is obvious that this signal is bounded and applicable in
practice.

The adaptive parameters of dead-zone nonlinearity are
shown in Fig. 3. This figure show that these parameters are
updated based on the proposed adaptive laws and vary during
the simulations. In addition, these parameters are bounded and
therefore, this makes the control signal bounded.

In addition, in order to show that in the proposed method
it is not required to know a priori knowledge about con-
trol gain sign, the same simulations have been carried out
for the proposed system when ρ = 2. From the simula-
tion results, one can write even though the system is in this
nonstrict feedback form, the system states may not be available
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Fig. 4. Output y and the reference signal yr for ρ = 2.

Fig. 5. Control input for ρ = 2.

for measurement, the system contains nonlinearities, unknown
dead-zone, and unknown control direction, and the proposed
observer-based fuzzy adaptive controller can guarantee the sta-
bility of the closed-loop system. In addition, as it is seen in
Fig. 4, the system output tracks the desired trajectory with
small tracking error. Besides, the system output does not
violate the predefined bounded considered in the design pro-
cedure. In addition, it can be observed from Fig. 5 that the
control signal is bounded and applicable for implementation.
The proposed method can be implemented on a wide class of
nonlinear systems in nonstrict feedback form. For example, it
can be applied to practical systems, e.g., mass-spring-damper
system [23] and marine surface vehicles [44].

VI. CONCLUSION

In this paper, we have developed a new method for con-
trolling uncertain nonstrict nonlinear systems with known
disturbances, unknown gain sign, and unknown dead-zone. In
order to approximate unknown functions in the system, FLS
has been utilized and based on the adaptive mechanism; the
unknown functions were approximated effectively. In addition,
to solve the problem of so-called “explosion of complexity”
which exists in traditional back-stepping control design, the
DSC methodology was used. This method incorporates a fuzzy
logic observer to overcome the difficulty of accessibility to
unmeasured states. It was shown that the proposed observer-
based fuzzy adaptive controller can assure the boundedness of
the closed-loop signals and ensures the tracking performance
of the system in spite of having uncertainties, disturbances, and
unknown control direction. Finally, a simulation example was
demonstrated to show the efficiency of the proposed method.

It is interesting to apply the proposed method to practi-
cal examples in the future works. For example, the systems
presented in [44] and [45] are two potential applications that
could be good candidates for the proposed method. In addi-
tion, an extension of the proposed method to stochastic and
multiagent nonlinear systems is considered as future work.
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