Warning! You are not logged in. Log in or create an account to have your edits attributed to your username rather than your IP, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 24: Line 24:
After looking at a year's heating bills I am using about 6.16 cubic meters of natural gas daily during our 5 month heating period. This equates to about 230,000 btu's daily or 57.96 Mcal. At delivered efficiency of 80%, target rate, that means 72.45 Mcal daily. I am using calories as it is intended to have a 2 day heat reservoir in the form of a water tank and it is easy to calculate storage capacity in calories. A cubic meter, 1000 L, of water would have a storage capacity of 55 Mcal given an starting temperature of 90 celsius and a lower temperature of 35 celsius. This indicates a 3000 L tank would be required, 2m x 1m x 1.5m (L x W x H). Liquid - air heat exchangers are readily available and homebuilt ones are certainly possible using automotive radiators. Indeed by keeping the 12V DC fan and a dc circulating pump this could even supply heat during power blackouts with a spare battery and a manual charger (bicycle powered perhaps).
After looking at a year's heating bills I am using about 6.16 cubic meters of natural gas daily during our 5 month heating period. This equates to about 230,000 btu's daily or 57.96 Mcal. At delivered efficiency of 80%, target rate, that means 72.45 Mcal daily. I am using calories as it is intended to have a 2 day heat reservoir in the form of a water tank and it is easy to calculate storage capacity in calories. A cubic meter, 1000 L, of water would have a storage capacity of 55 Mcal given an starting temperature of 90 celsius and a lower temperature of 35 celsius. This indicates a 3000 L tank would be required, 2m x 1m x 1.5m (L x W x H). Liquid - air heat exchangers are readily available and homebuilt ones are certainly possible using automotive radiators. Indeed by keeping the 12V DC fan and a dc circulating pump this could even supply heat during power blackouts with a spare battery and a manual charger (bicycle powered perhaps).


Refractory density <math>4 g/cm^3</math>
Refractory density 4 g/cm3


{{Page data
{{Page data
Warning! All contributions to Appropedia are released under the CC-BY-SA-4.0 license unless otherwise noted (see Appropedia:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here! You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted material without permission!
Cancel Editing help (opens in new window)

This page is a member of a hidden category:

Cookies help us deliver our services. By using our services, you agree to our use of cookies.