No edit summary
Line 51: Line 51:
----
----
'''Growbot:'''
'''Growbot:'''
   
    This semester, Zach and I took on the task to redesign the chassis for [[OSHE Growbot|Growbot]]. Aluminium extrusion was chosen to allow for a symmetric and modular design that would allow for multiple types of sensors and attachments to be easily added. Following the chassis redesign, the next assembly that was changed was the drivetrain. We temporarily shifted away from the tank-track design to a more traditional wheel/tire setup. This setup would allow for us to easily change gearing, wheel/tire size, and tire tread design. With this simple hub design to carry the axle assembly, and with the majority of the pars within the assembly being 3D printed it would allow a user to easily be able to change parts on the fly to their liking. In this assembly, I designed a first set of test tires with PTU, otherwise known as NinjaFlex. This allowed for me to design different tread patterns on the tire to adapt for different terrain and also provide a softer ride for the robot since the material is flexible. Overall this redesign allowed for us to have a much sturdier, and reliable robot that could be produced in an easier manner compared to the old design. Light amounts of metal work had to be done in preparation for assembly like cutting the axles and aluminum extrusion down to size, but besides that its simple tools to assemble the robot. Assembly instructions for the robot can be found broken down into separate subsections in the [[OSHE Growbot]] page.
     
{{Gallery
|title=Growbot Fall 2019
|width=250
|height=180
|padding=2
|lines=5
|align=center
|File:RBCADJG.JPG|GrowBot CAD
}}
 


[[category:OSHE]][[category:Growbot]]
[[category:OSHE]][[category:Growbot]]

Revision as of 20:47, 25 April 2020

JGHS.jpg

Joaquin Ganoza

Template:Userboxtop Template:User OSH Template:User 3D printing Template:Userboxbottom Email: jganoza@mtu.edu

https://www.linkedin.com/in/joaquin-ganoza-667800128/

About Me

Hi there, my name is Joaquin Ganoza. I am currently pursuing a Mechanical Engineering degree and have obtained my minor in International Spanish. I love to design and create using CAD and fabrication. In the past I have worked as an Mechanical Engineering Intern for the GLRC and this coming summer I will be an R&D Engineering Intern at Precision Planting.


Interests

CAD Motorcycles 3D Printing Robotics Automobiles Traveling

Experience

  • Developed bespoke solution for mounting floor scanner in Yamaha Waverunner
  • Past experience building several car engines

Enterprise

Semester 1 Fall 2019


Growbot:

   This semester I worked on OSHE's newly funded EMI project, Growbot. For this semester, I was tasked to be the design lead for the robot. I was the one responsible for designing the robot in CAD and bringing it to life with parts designed within that software. The software chosen to remain in the open-source community was FreeCad, utilizing both its part and assembly modules to design and incorporate parts together one unit. The robots frame went through multiple iterations until as a team we decided on a design that would best fit our needs for future endeavors we expect to do with this robot. I worked with the electronics side of the team to determine the layout of components within the robot, as weight distribution would be a key part of how the robot handles. After establishing the location of internal parts, I built the frame around that initial chassis to tie the robot together . The frame is designed to be easily taken apart with a screwdriver, allowing maintenance to be an easy task along with ensuring others will have an easy time to build the frame pieces if chosen to be replicated. Currently I am working on 3D printing the rest of the components that complete the robot, such as the tank Tracks, Rail Frames, Guide Wheels, and Gearing.


Semester 2 Spring 2020


Growbot:

   This semester, Zach and I  took on the task to redesign the chassis for Growbot. Aluminium extrusion was chosen to allow for a symmetric and modular design that would allow for multiple types of sensors and attachments to be easily added. Following the chassis redesign, the next assembly that was changed was the drivetrain. We temporarily shifted away from the tank-track design to a more traditional wheel/tire setup. This setup would allow for us to easily change gearing, wheel/tire size, and tire tread design. With this simple hub design to carry the axle assembly, and with the majority of the pars within the assembly being 3D printed it would allow a user to easily be able to change parts on the fly to their liking. In this assembly, I designed a first set of test tires with PTU, otherwise known as NinjaFlex. This allowed for me to design different tread patterns on the tire to adapt for different terrain and also provide a softer ride for the robot since the material is flexible. Overall this redesign allowed for us to have a much sturdier, and reliable robot that could be produced in an easier manner compared to the old design. Light amounts of metal work had to be done in preparation for assembly like cutting the axles and aluminum extrusion down to size, but besides that its simple tools to assemble the robot. Assembly instructions for the robot can be found broken down into separate subsections in the OSHE Growbot page.
     
Cookies help us deliver our services. By using our services, you agree to our use of cookies.