Line 64: Line 64:
'''Keywords:''' Prototyping, modelling, Process design
'''Keywords:''' Prototyping, modelling, Process design


'''Summary Notes:'''  
'''Summary Notes:'''
* A mathematical model has been developed to investigate the relationship between bonding and cooling of the FDM operation.
* Various build parameters will produce property variation.
* Current models can produce / replicate multilayered scenarios.


===[http://www.sciencedirect.com/science/article/pii/S1359835X05002782 Enhanced thermal conductivity of polymer composites filled with hybrid filler<ref>Geon-Woong Lee, Min Park, Junkyung Kim, Jae Ik Lee, Ho Gyu Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites Part A: Applied Science and Manufacturing, Volume 37, Issue 5, May 2006, Pages 727-734, ISSN 1359-835X, http://dx.doi.org/10.1016/j.compositesa.2005.07.006. (http://www.sciencedirect.com/science/article/pii/S1359835X05002782)</ref>]===
===[http://www.sciencedirect.com/science/article/pii/S1359835X05002782 Enhanced thermal conductivity of polymer composites filled with hybrid filler<ref>Geon-Woong Lee, Min Park, Junkyung Kim, Jae Ik Lee, Ho Gyu Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites Part A: Applied Science and Manufacturing, Volume 37, Issue 5, May 2006, Pages 727-734, ISSN 1359-835X, http://dx.doi.org/10.1016/j.compositesa.2005.07.006. (http://www.sciencedirect.com/science/article/pii/S1359835X05002782)</ref>]===

Revision as of 18:21, 23 February 2016

Background

This page is dedicated to the literature review of 3D printable conductive filaments.

Literature

Electrical and thermal conductivity of polymers filled with metal powders [1]

Abstract: The electrical and thermal conductivity of systems based on epoxy resin (ER) and poly(vinyl chloride) (PVC) filled with metal powders have been studied. Copper and nickel powders having different particle shapes were used as fillers. The composite preparation conditions allow the formation of a random distribution of metallic particles in the polymer matrix volume for the systems ER–Cu, ER–Ni, PVC–Cu and to create ordered shell structure in the PVC–Ni system. A model is proposed to describe the shell structure electric conductivity. The percolation theory equation σ∼(ϕ−ϕc)t with t=2.4–3.2 (exceeding the universal t=1.7 value) holds true for the systems with dispersed filler random distribution, but not for the PVC–Ni system. The percolation threshold ϕc depends on both particle shape and type of spatial distribution (random or ordered). In contrast to the electrical conductivity, the concentration dependence of thermal conductivity shows no jump in the percolation threshold region. For the description of the concentration dependence of the electrical and thermal conductivity, the key parameter is the packing factor F. F takes into account the influence of conductive phase topology and particle shape on the electrical and thermal conductivity.

Keywords: Copper powders, Nickel powders, Metal powders

Summary Notes:

  • Packing factor is a key parameter is resultant performance
  • Shape and spacial distribution are key parameters to control thermal conductivity
  • Difficult to reach maximum packing factor with inherently porous metal matrix composites

Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites[2]

Abstract: Thermal conductivity of copper powder filled polyamide composites are investigated experimentally in the range of filler content 0-30% by volume for particle shape of short fibers and 0-60% by volume for particle shapes of plates and spheres. The thermal conductivity of polymer composites is measured by the Hot-Disk method. It is seen that the experimental values for all the copper particle shapes are close to each other at low particle content, φ<10, as the particles are dispersed in the polyamide matrix and they are not interacting with each other. For particle content greater than 10% by volume, a rapid increase occurs in the thermal conductivity for the copper fibers filled polymer composite. As a result of this study, thermal conductivity of copper filled polyamide composites depends on the thermal conductivity of the filler particles, filler particle shape and size, and the volume fraction and spatial arrangement of the filler particles in the polymer matrix.

Summary Notes:

  • A metal/polymer composites thermal conductivity is increased by the addition of fillers
    • Fillers = Spheres, fibers and plates of metallic filler
  • Metallic fiber filers provided the greatest increase in thermal conductivity

Thermal characteristics of a new metal/polymer material for FDM rapid prototyping process[3]

Abstract: This paper presents the development and characterization of a new metal/polymer composite material for use in fused deposition modeling (FDM) rapid prototyping process with the aim of application to direct rapid tooling. The work represents a major development in reducing the cost and time in rapid tooling. The material consists of iron particles in a nylon type matrix. the detailed formulation and characterization of the thermal properties of the various combinations of the new composites are investigated experimentally. Results are compared with other metal/polymer composites used in rapid tooling. The feedstock filaments of this composition have been produced and used successfully in the unmodified FDM system for direct rapid tooling of injection molding inserts. Thermal properties are found to be acceptable for rapid tooling applications for injection molding.

Keywords: Rapid prototypes, Composite materials, Metals, Polymers

Summary Notes:

  • Thermal conductivity of a composite was found to increase proportionally to the amount of fillers.
  • A significant increase was noted as the volume % of metallic fiber rose in the matrix.
  • A larger particle size typically indicates a larger thermal conductivity

FDM 3D Printing Technology in Manufacturing Composite Elements[4]

Abstract: In recent years, FDM technology (Fused Deposition Modelling) has become one of the most widely-used rapid prototyping methods for various applications. This method is based on fused fibre material deposition on a drop-down platform, which offers the opportunity to design and introduce new materials, including composites. The material most commonly used in FDM is ABS, followed by PC, PLA, PPSF, ULTEM9085 and mixtures thereof. Recently, work has been done on the possibility of applying ABS blends: steel powders, aluminium, or even wood ash. Unfortunately, most modern commercial systems are closed, preventing the use of any materials other than those of the manufacturer. For this reason, the Department of Manufacturing Systems (KSW) of AGH University of Science and Technology, Faculty of Mechanical Engineering And Robotics purchased a 3D printer with feeding material from trays reel, which allows for the use of other materials. In addition, a feedstock production system for the 3D printer has been developed and work has started on the creation of new composite materials utilising ceramics.

Keywords: 3D printing, rapid prototyping, FDM, rapid tooling

Summary Notes:

  • HAP filled nylon polymers have been developed in FDM technology
  • Developed customer filament manufacture station (extruder).
  • Microstructural and SEM/EDX types analysis are included for reference.
    • Coupled with optical microscopy, the determination / confirmation of particle size/type and uniform dispersion can be concluded.

Metal Powder-Filled Polyethylene Composites. V. Thermal Properties[5]

Abstract: Thermal properties—such as thermal conductivity, thermal diffusivity, and specific heat—of metal (copper, zinc, iron, and bronze) powder-filled high-density polyethylene composites are investigated experimentally in the range of filler content 0-24% by volume. Experimental results show a region of low particle content, 0-16% by volume, where the particles are distributed homogeneously in the polymer matrix and do not interact with each other. In this region most of the thermal conductivity models for two-phase systems are applicable. At higher particle content, the filler tends to form agglomerates and conductive chains resulting in a rapid increase in thermal conductivity.

Keywords: Metal-filled polymers, metal fillers, thermal conductivity, high-density polyethylene,

Summary Notes:

Conceptual framework for the thermal process modelling of fused deposition[6]

Abstract: This paper explains the fused deposition process and examines the rationale behind the cooling process model. The complexity of the problems and characteristics of fused deposition are outlined. A general formulation for road cooling is presented, followed by results and their implications. The paper concludes with proposed directions for future work. A summary of a discussion of the paper that took place during the first Internet Conference on Rapid Product Development is included.

Keywords: Prototyping, modelling, Process design

Summary Notes:

  • A mathematical model has been developed to investigate the relationship between bonding and cooling of the FDM operation.
  • Various build parameters will produce property variation.
  • Current models can produce / replicate multilayered scenarios.

Enhanced thermal conductivity of polymer composites filled with hybrid filler[7]

Abstract: This study aims at investigating package materials based on polymer matrix for microelectronics. The next generation package materials are expected to possess high heat dissipation capability in addition to low coefficient of thermal expansion (CTE) as the accumulated heat from high performance electronic devices should be removed for proper operation. In this study, various inorganic fillers including aluminum nitride (AlN), wollastonite, silicon carbide whisker (SiC) and boron nitride (BN) with different shape and size were used alone or in combination to prepare thermally conductive polymer composites. In case of AlN, titanate coupling agent was used for the surface treatment of fillers. The use of hybrid filler was found to be effective in increasing thermal conductivity of the composite probably due to the enhanced connectivity offered by structuring filler with high aspect ratio in hybrid filler. For given filler loading, the use of larger particle and surface treated filler resulted in composite materials with enhanced thermal conductivity. The surface treatment of filler also allowed producing the composites with lower CTE.

Keywords: Hybrid, Thermal process, Powder processing, Thermal properties, Thermal analysis

Summary Notes:

Additive Processing of Polymers[8]

Abstract: Additive processing technologies are rapidly growing in all fields of application. A large number of scientific publications were investigated in order to provide a comprehensive overview of rapid prototyping methods for polymers and their applications, of currently available materials and research concerning additive processes. The current problems of additive processes are described, together with their potential solutions. Furthermore, this article delivers an insight into possible future trends of additive technologies.

Keywords: 3D-printing, SLS, FDM, extrusion

Summary Notes:

Dynamic Mechanical Properties of Copper-ABS Composites for FDM Feedstock[9]

Abstract: This paper presents an investigation of dynamic mechanical properties of a copper-ABS composite material for possible fused deposition modeling (FDM) feedstock. The material consists of copper powder filled in an acrylonitrile butadiene styrene (ABS). The detailed formulations of compounding ratio by volume percentage (vol. %) with various combinations of the new polymer matrix composite (PMC) are investigated experimentally. Based on the result obtained, it was found that, increment by vol. % of copper filler ABS affected the storage modules (E’) and tan δ results. The storage modulus and tangent delta increased proportionally with increment of copper filled ABS. It can be observed that, the storage modulus and tangent delta are dependent on the copper filled ABS in the PMC material.

Keywords: Polymer matrix composites, Fused deposition modeling, Dynamic mechanical properties

Summary Notes:

{http://link.springer.com/article/10.1023/A:1024096401779 Predicting, Measuring, and Tailoring the Transverse Thermal Conductivity of Composites from Polymer Matrix and Metal Filler[10]}

Abstract: The addition of conductive filler in a polymer matrix is an effective way to increase the thermal conductivity of the plastic materials, as required by several industrial applications. All quantitative models for the thermal conductivity of heterogeneous media fail for heavily filled composites. The percolation theory allows good qualitative predictions, thus selecting a range for some qualitative effects on the thermal conductivity, and providing a way to choose a range for some experimental parameters. The design of such composite materials requires a study of its thermal features combined with different mechanical, ecological, safety, technical, and economical restrictions. A specific small guarded hot plate device with an active guard, conductive grease layer, and controlled variable pressure was used for measurement of the transverse thermal conductivity on 15 mm sided samples of composite parts. Extensive thermal and composition measurements on filled thermoplastics show that the conductivity of the filler, its size and shape, and its local amount are, with the degree of previous mixing, the main factors determining the effective conductivity of composites. For injection-molded polybutylene terephtalate plates, the best filler is the short aluminum fiber. With fibers of 0.10 mm diameter, it is possible to obtain conductivities larger by factors of 2, 6, and 10 than those of polymer for aluminum contents of 20, 42, and 43.5 vol%, respectively.

Keywords: Aluminum wire, Filled polymer, Thermal Conductivity, Thermoplastic compound

"""Summary Notes:

Development of new metal/polymer materials for rapid tooling using Fused deposition modelling[11]

Abstract: This paper presents the development of a new metal/polymer composite material for use in fused deposition modelling (FDM) process with the aim of application to direct rapid tooling. The material consists of iron particles in a nylon type matrix. The detailed formulation and characterisation of the tensile properties of the various combinations of the new composites are investigated experimentally. The feedstock filaments of this composite have been produced and used successfully in the unmodified FDM system for direct rapid tooling of injection moulding inserts. High quality plastic parts have been injection moulded using the inserts. The work represents a major development in reducing the cost and time in rapid tooling.

Keywords: Fused deposition modeling, Rapid prototyping, Composite Strength, Tensile strength, Direct rapid tooling, injection molding

Summary Notes:

Thermo-Mechanical Properties of a Metal-filled Polymer Composite for Fused Deposition Modelling Applications [12]

Abstract: Thermo-mechanical properties of a new metal-polymer composite consisting of an FDMgrade acrylonitrile butadiene styrene (ABS) containing 10% fine iron particles by volume have been investigated experimentally. Thermal properties tested include glass transition temperature using Dynamic Thermal Analysis (DTA) and Heat Capacity using Differential Scanning Calorimetry (DSC). The tensile strength and dynamic mechanical properties have also been tested. It has been shown that the addition of 10% iron powder improves thermal properties and storage modulus of the FDMgrade ABS resulting in more thermally stable prototypes producible on Stratasys FDM300 machine, while tensile strength drops significantly. The feedstock filaments of this composite have been successfully produced and used in the Fused Deposition Modelling (FDM) rapid prototyping machine.

Keywords: Fused depositions modeling (FDM), Rapid prototypes, Composite materials, Thermal properties, Tensile Strength

Summary Notes:

Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites[13]

Abstract: Low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) with different copper contents were prepared by melt mixing. The copper powder particle distributions were found to be relatively uniform at both low and high copper contents. There was cluster formation of copper particles at higher Cu contents, as well as the formation of percolation paths of copper in the PE matrices. The DSC results show that Cu content has little influence on the melting temperatures of LDPE and LLDPE in these composites. From melting enthalpy results it seems as if copper particles act as nucleating agents, giving rise to increased crystallinities of the polyethylene. The thermal stability of the LDPE filled with Cu powder is better than that for the unfilled polymer. The LLDPE composites show better stability only at lower Cu contents. Generally, the composites show poorer mechanical properties (except Young's modulus) compared to the unfilled polymers. The thermal and electrical conductivities of the composites were higher than that of the pure polyethylene matrix for both the LDPE and LLDPE. From these results the percolation concentration was determined as 18.7 vol.% copper for both polymers.

Keywords: PE-Cu composites, Tensile properties, Thermal conductivity, Differential scanning calorimetry, Thermogravmetric analysis

Summary Notes:

References

  1. Ye.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, European Polymer Journal, Volume 38, Issue 9, September 2002, Pages 1887-1897, ISSN 0014-3057, http://dx.doi.org/10.1016/S0014-3057(02)00064-2. (http://www.sciencedirect.com/science/article/pii/S0014305702000642)
  2. Tekce, H. Serkan, Dilek Kumlutas, and Ismail H. Tavman. "Effect of particle shape on thermal conductivity of copper reinforced polymer composites." Journal of Reinforced Plastics and Composites 26.1 (2007): 113-121.
  3. S.H. Masood, W.Q. Song, (2005) "Thermal characteristics of a new metal/polymer material for FDM rapid prototyping process", Assembly Automation, Vol. 25 Iss: 4, pp.309 - 315
  4. Archives of Metallurgy and Materials. Volume 58, Issue 4, Pages 1415–1418, ISSN (Online) 2300-1909, DOI: 10.2478/amm-2013-0186, December 2013
  5. Sofian, N. M., et al. "Metal powder-filled polyethylene composites. V. Thermal properties." Journal of Thermoplastic Composite Materials 14.1 (2001): 20-33.
  6. M. Atif Yardimci, Selçuk Güçeri, (1996) "Conceptual framework for the thermal process modelling of fused deposition", Rapid Prototyping Journal, Vol. 2 Iss: 2, pp.26 - 31
  7. Geon-Woong Lee, Min Park, Junkyung Kim, Jae Ik Lee, Ho Gyu Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites Part A: Applied Science and Manufacturing, Volume 37, Issue 5, May 2006, Pages 727-734, ISSN 1359-835X, http://dx.doi.org/10.1016/j.compositesa.2005.07.006. (http://www.sciencedirect.com/science/article/pii/S1359835X05002782)
  8. Wendel, Bettina, et al. "Additive processing of polymers." Macromolecular materials and engineering 293.10 (2008): 799-809.
  9. Sa’ude, N., et al. "Dynamic mechanical properties of copper-ABS composite for FDM feedstock." International Journal of Engineering Research and Application 3.3 (2013): 257-1263.
  10. Danes, F., B. Garnier, and T. Dupuis. "Predicting, measuring, and tailoring the transverse thermal conductivity of composites from polymer matrix and metal filler." International journal of thermophysics 24.3 (2003): 771-784.
  11. Masood, S. H., and W. Q. Song. "Development of new metal/polymer materials for rapid tooling using fused deposition modelling." Materials & Design 25.7 (2004): 587-594.
  12. Veidt, Martin, et al. "Thermo-mechanical properties of a metal-filled polymer composite for fused deposition modelling applications." 5th Australasian Congress on Applied Mechanics (ACAM 2007). Vol. 1. Engineers Australia, 2007.
  13. Luyt, A. S., J. A. Molefi, and H. Krump. "Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites." Polymer Degradation and Stability 91.7 (2006): 1629-1636.
Cookies help us deliver our services. By using our services, you agree to our use of cookies.