Line 58: Line 58:


'''Keywords:''' Hybrid, Thermal process, Powder processing, Thermal properties, Thermal analysis
'''Keywords:''' Hybrid, Thermal process, Powder processing, Thermal properties, Thermal analysis
'''Summary Notes:'''
===[http://onlinelibrary.wiley.com/doi/10.1002/mame.200800121/full Additive Processing of Polymers<ref>Wendel, Bettina, et al. "Additive processing of polymers." Macromolecular materials and engineering 293.10 (2008): 799-809.</ref>]===
'''Abstract:''' Additive processing technologies are rapidly growing in all fields of application. A large number of scientific publications were investigated in order to provide a comprehensive overview of rapid prototyping methods for polymers and their applications, of currently available materials and research concerning additive processes. The current problems of additive processes are described, together with their potential solutions. Furthermore, this article delivers an insight into possible future trends of additive technologies.
'''Keywords:''' 3D-printing, SLS, FDM, extrusion


'''Summary Notes:'''
'''Summary Notes:'''

Revision as of 14:55, 11 February 2016

Background

This page is dedicated to the literature review of 3D printable conductive filaments.

Literature

Electrical and thermal conductivity of polymers filled with metal powders [1]

Abstract: The electrical and thermal conductivity of systems based on epoxy resin (ER) and poly(vinyl chloride) (PVC) filled with metal powders have been studied. Copper and nickel powders having different particle shapes were used as fillers. The composite preparation conditions allow the formation of a random distribution of metallic particles in the polymer matrix volume for the systems ER–Cu, ER–Ni, PVC–Cu and to create ordered shell structure in the PVC–Ni system. A model is proposed to describe the shell structure electric conductivity. The percolation theory equation σ∼(ϕ−ϕc)t with t=2.4–3.2 (exceeding the universal t=1.7 value) holds true for the systems with dispersed filler random distribution, but not for the PVC–Ni system. The percolation threshold ϕc depends on both particle shape and type of spatial distribution (random or ordered). In contrast to the electrical conductivity, the concentration dependence of thermal conductivity shows no jump in the percolation threshold region. For the description of the concentration dependence of the electrical and thermal conductivity, the key parameter is the packing factor F. F takes into account the influence of conductive phase topology and particle shape on the electrical and thermal conductivity.

Keywords: Copper powders, Nickel powders, Metal powders

Summary Notes:

Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites[2]

Abstract: Thermal conductivity of copper powder filled polyamide composites are investigated experimentally in the range of filler content 0-30% by volume for particle shape of short fibers and 0-60% by volume for particle shapes of plates and spheres. The thermal conductivity of polymer composites is measured by the Hot-Disk method. It is seen that the experimental values for all the copper particle shapes are close to each other at low particle content, φ<10, as the particles are dispersed in the polyamide matrix and they are not interacting with each other. For particle content greater than 10% by volume, a rapid increase occurs in the thermal conductivity for the copper fibers filled polymer composite. As a result of this study, thermal conductivity of copper filled polyamide composites depends on the thermal conductivity of the filler particles, filler particle shape and size, and the volume fraction and spatial arrangement of the filler particles in the polymer matrix.

Summary Notes:

Thermal characteristics of a new metal/polymer material for FDM rapid prototyping process[3]

Abstract: This paper presents the development and characterization of a new metal/polymer composite material for use in fused deposition modeling (FDM) rapid prototyping process with the aim of application to direct rapid tooling. The work represents a major development in reducing the cost and time in rapid tooling. The material consists of iron particles in a nylon type matrix. the detailed formulation and characterization of the thermal properties of the various combinations of the new composites are investigated experimentally. Results are compared with other metal/polymer composites used in rapid tooling. The feedstock filaments of this composition have been produced and used successfully in the unmodified FDM system for direct rapid tooling of injection molding inserts. Thermal properties are found to be acceptable for rapid tooling applications for injection molding.

Keywords: Rapid prototypes, Composite materials, Metals, Polymers

Summary Notes:

FDM 3D Printing Technology in Manufacturing Composite Elements[4]

Abstract: In recent years, FDM technology (Fused Deposition Modelling) has become one of the most widely-used rapid prototyping methods for various applications. This method is based on fused fibre material deposition on a drop-down platform, which offers the opportunity to design and introduce new materials, including composites. The material most commonly used in FDM is ABS, followed by PC, PLA, PPSF, ULTEM9085 and mixtures thereof. Recently, work has been done on the possibility of applying ABS blends: steel powders, aluminium, or even wood ash. Unfortunately, most modern commercial systems are closed, preventing the use of any materials other than those of the manufacturer. For this reason, the Department of Manufacturing Systems (KSW) of AGH University of Science and Technology, Faculty of Mechanical Engineering And Robotics purchased a 3D printer with feeding material from trays reel, which allows for the use of other materials. In addition, a feedstock production system for the 3D printer has been developed and work has started on the creation of new composite materials utilising ceramics.

Keywords: 3D printing, rapid prototyping, FDM, rapid tooling

Summary Notes:

Metal Powder-Filled Polyethylene Composites. V. Thermal Properties[5]

Abstract: Thermal properties—such as thermal conductivity, thermal diffusivity, and specific heat—of metal (copper, zinc, iron, and bronze) powder-filled high-density polyethylene composites are investigated experimentally in the range of filler content 0-24% by volume. Experimental results show a region of low particle content, 0-16% by volume, where the particles are distributed homogeneously in the polymer matrix and do not interact with each other. In this region most of the thermal conductivity models for two-phase systems are applicable. At higher particle content, the filler tends to form agglomerates and conductive chains resulting in a rapid increase in thermal conductivity.

Keywords: Metal-filled polymers, metal fillers, thermal conductivity, high-density polyethylene,

Summary Notes:

Conceptual framework for the thermal process modelling of fused deposition[6]

Abstract: This paper explains the fused deposition process and examines the rationale behind the cooling process model. The complexity of the problems and characteristics of fused deposition are outlined. A general formulation for road cooling is presented, followed by results and their implications. The paper concludes with proposed directions for future work. A summary of a discussion of the paper that took place during the first Internet Conference on Rapid Product Development is included.

Keywords: Prototyping, modelling, Process design

Summary Notes:

Enhanced thermal conductivity of polymer composites filled with hybrid filler[7]

Abstract: This study aims at investigating package materials based on polymer matrix for microelectronics. The next generation package materials are expected to possess high heat dissipation capability in addition to low coefficient of thermal expansion (CTE) as the accumulated heat from high performance electronic devices should be removed for proper operation. In this study, various inorganic fillers including aluminum nitride (AlN), wollastonite, silicon carbide whisker (SiC) and boron nitride (BN) with different shape and size were used alone or in combination to prepare thermally conductive polymer composites. In case of AlN, titanate coupling agent was used for the surface treatment of fillers. The use of hybrid filler was found to be effective in increasing thermal conductivity of the composite probably due to the enhanced connectivity offered by structuring filler with high aspect ratio in hybrid filler. For given filler loading, the use of larger particle and surface treated filler resulted in composite materials with enhanced thermal conductivity. The surface treatment of filler also allowed producing the composites with lower CTE.

Keywords: Hybrid, Thermal process, Powder processing, Thermal properties, Thermal analysis

Summary Notes:

Additive Processing of Polymers[8]

Abstract: Additive processing technologies are rapidly growing in all fields of application. A large number of scientific publications were investigated in order to provide a comprehensive overview of rapid prototyping methods for polymers and their applications, of currently available materials and research concerning additive processes. The current problems of additive processes are described, together with their potential solutions. Furthermore, this article delivers an insight into possible future trends of additive technologies.

Keywords: 3D-printing, SLS, FDM, extrusion

Summary Notes:

References

  1. Ye.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, European Polymer Journal, Volume 38, Issue 9, September 2002, Pages 1887-1897, ISSN 0014-3057, http://dx.doi.org/10.1016/S0014-3057(02)00064-2. (http://www.sciencedirect.com/science/article/pii/S0014305702000642)
  2. Tekce, H. Serkan, Dilek Kumlutas, and Ismail H. Tavman. "Effect of particle shape on thermal conductivity of copper reinforced polymer composites." Journal of Reinforced Plastics and Composites 26.1 (2007): 113-121.
  3. S.H. Masood, W.Q. Song, (2005) "Thermal characteristics of a new metal/polymer material for FDM rapid prototyping process", Assembly Automation, Vol. 25 Iss: 4, pp.309 - 315
  4. Archives of Metallurgy and Materials. Volume 58, Issue 4, Pages 1415–1418, ISSN (Online) 2300-1909, DOI: 10.2478/amm-2013-0186, December 2013
  5. Sofian, N. M., et al. "Metal powder-filled polyethylene composites. V. Thermal properties." Journal of Thermoplastic Composite Materials 14.1 (2001): 20-33.
  6. M. Atif Yardimci, Selçuk Güçeri, (1996) "Conceptual framework for the thermal process modelling of fused deposition", Rapid Prototyping Journal, Vol. 2 Iss: 2, pp.26 - 31
  7. Geon-Woong Lee, Min Park, Junkyung Kim, Jae Ik Lee, Ho Gyu Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites Part A: Applied Science and Manufacturing, Volume 37, Issue 5, May 2006, Pages 727-734, ISSN 1359-835X, http://dx.doi.org/10.1016/j.compositesa.2005.07.006. (http://www.sciencedirect.com/science/article/pii/S1359835X05002782)
  8. Wendel, Bettina, et al. "Additive processing of polymers." Macromolecular materials and engineering 293.10 (2008): 799-809.
Cookies help us deliver our services. By using our services, you agree to our use of cookies.