Warning! You are not logged in. Log in or create an account to have your edits attributed to your username rather than your IP, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 112: Line 112:
=== [http://www.sciencedirect.com/science/article/pii/S1359835X05002782 Enhanced thermal conductivity of polymer composites filled with hybrid filler<ref>Geon-Woong Lee, Min Park, Junkyung Kim, Jae Ik Lee, Ho Gyu Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites Part A: Applied Science and Manufacturing, Volume 37, Issue 5, May 2006, Pages 727-734, ISSN 1359-835X, http://dx.doi.org/10.1016/j.compositesa.2005.07.006. (http://www.sciencedirect.com/science/article/pii/S1359835X05002782)</ref>] ===
=== [http://www.sciencedirect.com/science/article/pii/S1359835X05002782 Enhanced thermal conductivity of polymer composites filled with hybrid filler<ref>Geon-Woong Lee, Min Park, Junkyung Kim, Jae Ik Lee, Ho Gyu Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites Part A: Applied Science and Manufacturing, Volume 37, Issue 5, May 2006, Pages 727-734, ISSN 1359-835X, http://dx.doi.org/10.1016/j.compositesa.2005.07.006. (http://www.sciencedirect.com/science/article/pii/S1359835X05002782)</ref>] ===


'''Abstract:''' This study aims at investigating package materials based on polymer matrix for microelectronics. The next generation package materials are expected to possess high heat dissipation capability in addition to low coefficient of thermal expansion (CTE) as the accumulated heat from high performance electronic devices should be removed for proper operation. In this study, various inorganic fillers including aluminum nitride (AlN), wollastonite, silicon carbide whisker (SiC) and boron nitride (BN) with different shape and size were used alone or in combination to prepare thermally conductive polymer composites. In case of AlN, titanate coupling agent was used for the surface treatment of fillers. The use of hybrid filler was found to be effective in increasing thermal conductivity of the composite probably due to the enhanced connectivity offered by structuring filler with high aspect ratio in hybrid filler. For given filler loading, the use of larger particle and surface treated filler resulted in composite materials with enhanced thermal conductivity. The surface treatment of filler also allowed producing the composites with lower CTE.
Keywords: Hybrid, Thermal process, Powder processing, Thermal properties, Thermal analysis


'''Keywords:''' Hybrid, Thermal process, Powder processing, Thermal properties, Thermal analysis
Abstract: This study aims at investigating package materials based on polymer matrix for microelectronics. The next generation package materials are expected to possess high heat dissipation capability in addition to low coefficient of thermal expansion (CTE) as the accumulated heat from high performance electronic devices should be removed for proper operation. In this study, various inorganic fillers including aluminum nitride (AlN), wollastonite, silicon carbide whisker (SiC) and boron nitride (BN) with different shape and size were used alone or in combination to prepare thermally conductive polymer composites. In case of AlN, titanate coupling agent was used for the surface treatment of fillers. The use of hybrid filler was found to be effective in increasing thermal conductivity of the composite probably due to the enhanced connectivity offered by structuring filler with high aspect ratio in hybrid filler. For given filler loading, the use of larger particle and surface treated filler resulted in composite materials with enhanced thermal conductivity. The surface treatment of filler also allowed producing the composites with lower CTE.


'''Summary Notes:'''
Summary Notes:


=== [http://onlinelibrary.wiley.com/doi/10.1002/mame.200800121/full Additive Processing of Polymers<ref>Wendel, Bettina, et al. "Additive processing of polymers." Macromolecular materials and engineering 293.10 (2008): 799-809.</ref>] ===
=== [http://onlinelibrary.wiley.com/doi/10.1002/mame.200800121/full Additive Processing of Polymers<ref>Wendel, Bettina, et al. "Additive processing of polymers." Macromolecular materials and engineering 293.10 (2008): 799-809.</ref>] ===
Warning! All contributions to Appropedia are released under the CC-BY-SA-4.0 license unless otherwise noted (see Appropedia:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here! You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted material without permission!
Cancel Editing help (opens in new window)

This page is a member of 2 hidden categories:

Cookies help us deliver our services. By using our services, you agree to our use of cookies.