Source

  • David Shonnard, Emily Tipaldo, Vicki Thompson, Joshua Pearce, Gerard Caneba, Robert Handler. Systems Analysis for PET and Olefin Polymers in a Circular Economy. 26th CIRP Life Cycle Engineering Conference. Procedia CIRP 80, (2019), 602-606. https://doi.org/10.1016/j.procir.2019.01.072 open access

Abstract

Plasticscircleecon.png

Polyethylene terephthalate (PET #1) and polyolefin plastics such polyethylene (HDPE #2, LDPE #4) and polypropylene (PP #5) are major products from the chemical industry, and they comprise a significant fraction of municipal solid waste that ends up in landfills or as litter and marine debris. The reuse of these polymeric materials can be optimized through systems analysis with a view on materials flow analysis, techno-economics, environmental life cycle assessment, and consequential societal impacts. This contribution will present the overall research approach for this exploratory project within the DOE- and industry-funded REMADE Institute and end with a proposed systems analysis framework.

Keywords

systems analysis;plastics;sustainability; Circular economy; Distributed recycling; Energy conservation; Polymer recycling; Sustainable development; distributed manufacturing; life cycle analysis; recycling; recyclebot; 3-D printing; Open source hardware; Open hardware;  RepRap; Recycling; Polymers; Plastic; Recyclebot; Waste plastic; Composites; Polymer composites; Extruder; Upcycle;  Materials science;additive manufacturing; distributed manufacturing; open-source; waste plastic; extruder; upcycle

See also

RepRapable Recyclebot and the Wild West of Recycling

mqdefault.jpgYouTube_icon.svg
mqdefault.jpgYouTube_icon.svg

Recycling Technology

Distributed Recycling LCA

Literature Reviews

Gigarecycle.png

Externals

  • Economist article on U. of Washington's HDPE boat, Oprn3dp.me
  • https://ultimaker.com/en/resources/52444-ocean-plastic-community-project
  • Another possible solution - reusable containers [1]
  • Commercial https://dyzedesign.com/pulsar-pellet-extruder/
  • ---
  • Cruz, F., Lanza, S., Boudaoud, H., Hoppe, S., & Camargo, M. Polymer Recycling and Additive Manufacturing in an Open Source context: Optimization of processes and methods. [2]
  • Investigating Material Degradation through the Recycling of PLA in Additively Manufactured Parts
  • Mohammed, M.I., Das, A., Gomez-Kervin, E., Wilson, D. and Gibson, I., EcoPrinting: Investigating the use of 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing.
  • Kariz, M., Sernek, M., Obućina, M. and Kuzman, M.K., 2017. Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications. [3]
  • Kaynak, B., Spoerk, M., Shirole, A., Ziegler, W. and Sapkota, J., 2018. Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing. Macromolecular Materials and Engineering, p.1800037. [4]
  • O. Martikka et al., "Mechanical Properties of 3D-Printed Wood-Plastic Composites", Key Engineering Materials, Vol. 777, pp. 499-507, 2018 [5]
  • Yang, T.C., 2018. Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers, 10(9), p.976. [6]
  • Romani, A., Rognoli, V., & Levi, M. (2021). Design, Materials, and Extrusion-Based Additive Manufacturing in Circular Economy Contexts: From Waste to New Products. Sustainability, 13(13), 7269. https://www.mdpi.com/2071-1050/13/13/7269/pdf
Cookies help us deliver our services. By using our services, you agree to our use of cookies.