mNo edit summary
No edit summary
Line 15: Line 15:


Efficiency increase with air mass for crystalline, decrease for amorphous
Efficiency increase with air mass for crystalline, decrease for amorphous
--[1. Rüther R, Kleiss G, Reiche K. Spectral effects on amorphous silicon solar module fill factors. Solar Energy Materials and Solar Cells 2002 Feb;71(3):375-385.]
amorphous silicon is more efficient in the summer
crystalline more efficient in winter
A:Si matches very well with indoor illumination spectra, they are more efficient indoors
Spectral mismatch factor: ratio between Isc rated and Isc extrapolated to 1000W/m2
Does not neccesarily hold true for a:Si cells: "However, in amorphous silicon solar cells, the proposition of the non-dependence of
sðlÞ on the operating voltage does not hold. It is known that in p-i-n structures a typical
blue-dispersion of the spectral response occurs for higher bias voltages [14]. Since the
field-driven transport is the dominant mechanism with respect to diffusion, and since
the electrical field is extended over practically the whole cell, the generation profile inside
the cell produces a feedback on the internal quantum efficiency. In a-Si cell modelling,
one takes advantage of this effect by application of the DICE method [12,15,16] to
yield for a spatially resolved description of the field distribution inside the cell."
FF is the ratio between Imp and Isc
Used a filtered pyranometer to find "Red" and "Blue" spectra
Plots of FF vs Isc,shows much scatter in the central area of Isc.
Attrubited to the spectral effect, blue increasing FF, red to decrease it
Shows curves of spectral senstivity as a function of irradiation
--

Revision as of 15:08, 7 September 2010

Back to Main Page: Effects of snow on photovoltaic performance

Spectral effects on amorphous PV cells

--Effect of atmospheric parameters on the silicon solar cells performance, M. Chegaar, P. Mialhe Spectral effects simulated for Algeirs

effects in short-circuit current due to turbidity, decrease of: 4.41%, 4.7%, 7.34% for mono multi and amorphous. Turbidity decreases UV radiaiton

Increasing water vapour leads to decrease of 4.57%,4.4%, o.2% for same

Efficiency increase with air mass for crystalline, decrease for amorphous

--[1. Rüther R, Kleiss G, Reiche K. Spectral effects on amorphous silicon solar module fill factors. Solar Energy Materials and Solar Cells 2002 Feb;71(3):375-385.]


amorphous silicon is more efficient in the summer

crystalline more efficient in winter

A:Si matches very well with indoor illumination spectra, they are more efficient indoors

Spectral mismatch factor: ratio between Isc rated and Isc extrapolated to 1000W/m2

Does not neccesarily hold true for a:Si cells: "However, in amorphous silicon solar cells, the proposition of the non-dependence of sðlÞ on the operating voltage does not hold. It is known that in p-i-n structures a typical blue-dispersion of the spectral response occurs for higher bias voltages [14]. Since the field-driven transport is the dominant mechanism with respect to diffusion, and since the electrical field is extended over practically the whole cell, the generation profile inside the cell produces a feedback on the internal quantum efficiency. In a-Si cell modelling, one takes advantage of this effect by application of the DICE method [12,15,16] to yield for a spatially resolved description of the field distribution inside the cell."

FF is the ratio between Imp and Isc

Used a filtered pyranometer to find "Red" and "Blue" spectra

Plots of FF vs Isc,shows much scatter in the central area of Isc.

Attrubited to the spectral effect, blue increasing FF, red to decrease it

Shows curves of spectral senstivity as a function of irradiation

--

Cookies help us deliver our services. By using our services, you agree to our use of cookies.