Our target is to find out what FFF (fused filament fabrication) 3D printing filaments tolerate the harsh chemicals that we use in semiconductor processing and other cleanroom processes. FFF was chosen as the preferred 3D printing method of choice due thanks to its versatility, cost-effectivity and relative ease. 3D printing filaments are made from plastics by using additives (plasticizers and colorants), and the vendors rarely or ever provide the information on them to the customer. Therefore, it is not guaranteed that if a certain polymer tolerates, for example, HCl, 3D printed objects made from the same polymer could be used to make custom labware. We Further on, we do not know if the 3D printing (thermoplastic extrusion) itself causes any changes to the chemical resistance properties of the polymersmaterials.
Polypropylene (PP) is a 3D printable polymer that can tolerate many chemicals, and the authors of articles listed below have made reaction vessels and microfluidics applications from it. But are we limited to PP? In this we need to search for clues in chemical compatibility charts, also found below.