Literature Review

Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament [1]

Abstract The growth of desktop 3-D printers is driving an interest in recycled 3-D printer filament to reduce costs of distributed production. Life cycle analysis studies were performed on the recycling of high density polyethylene into filament suitable for additive layer manufacturing with 3-D printers. The conventional centralized recycling system for high population density and low population density rural locations was compared to the proposed in home, distributed recycling system. This system would involve shredding and then producing filament with an open-source plastic extruder from post-consumer plastics and then printing the extruded filament into usable, value-added parts and products with 3-D printers such as the open-source self replicating rapid prototyper, or RepRap. The embodied energy and carbon dioxide emissions were calculated for high density polyethylene recycling using SimaPro 7.2 and the database EcoInvent v2.0. The results showed that distributed recycling uses less embodied energy than the best-case scenario used for centralized recycling. For centralized recycling in a low-density population case study involving substantial embodied energy use for transportation and collection these savings for distributed recycling were found to extend to over 80%. If the distributed process is applied to the U.S. high density polyethylene currently recycled, more than 100 million MJ of energy could be conserved per annum along with the concomitant significant reductions in greenhouse gas emissions. It is concluded that with the open-source 3-D printing network expanding rapidly the potential for widespread adoption of in-home recycling of post-consumer plastic represents a novel path to a future of distributed manufacturing appropriate for both the developed and developing world with lower environmental impacts than the current system.

  • Comparisons on embodied energy and greenhouse gas emission between distributed recycling of HDPE and centralized recycling( high density population & low density population )
  • Distribute recycling saves a substantial amount of energy and emits less greenhouse gas than centralized recycling in low density population area, but the advantage compared with centralized recycling in high density population area is very small.
  • It will be better if elongating the period for centralized recycling in low density population area.
  • Uses the SimaPro 7.2 and the database EcoInvent v2.0.

Terms

  • Life cycle analysis (LCA) is the systematic approach of looking at a product's complete life cycle, from raw materials to final disposal of the product. It offers a “cradle to grave” look at a product or process, considering environmental aspects and potential impacts.
  • Embodied energy is the energy consumed by all of the processes associated with the production of a building, from the mining and processing of natural resources to manufacturing, transport and product delivery.
  • SimaPro is the professional tool to collect, analyse and monitor the sustainability performance data of company’s products and services. The software can be used for life cycle assessment and a variety of other applications, such as sustainability reporting, carbon and water footprinting, product design, generating environmental product declarations and determining key performance indicators.
  • EcoInvent is the LCA database which contains international industrial life cycle inventory data on energy supply, resource extraction, material supply, chemicals, metals, agriculture, waste management services and transport services that can be imported easily in openLCA.
  • Ethical Filament Foundationbelieves that there is an opportunity to create an environmentally friendly and ethically produced filament alternative to meet the needs of the rapidly growing 3D Printing market, and also believe that by doing this we could potentially open up a new market for value added products that can be produced by waste picker groups in low income countries.

Reference

  1. Kreiger, M. A., M. L. Mulder, A. G. Glover, and J. M. Pearce. "Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament." Journal of Cleaner Production 70 (2014): 90-96.
Cookies help us deliver our services. By using our services, you agree to our use of cookies.