Solar Photo voltaic technologies

Parida, B., Iniyan, S. and Goic, R., 2011. A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 15(3), pp.1625-1636. [1]

  • basics of solar photovoltaics
  • environmental advantages

Photovoltaic Materials

Goetzberger, A. and Hebling, C., 2000. Photovoltaic materials, past, present, future. Solar energy materials and solar cells, 62(1-2), pp.1-19. [2]

  • usage of silicon and why silicon?
  • requirements for ideal solar cell
  • crystalline Silicon domination in present market

Solar cell working and radiation measurement

Hu, C.C. and White, R.M., 2012. Solar cells: from basics to advanced systems. [3]

  • working principle of a solar cell
  • solar radiation measurement
  • pyranometer(solarimeter)
  • shading-ring pyranometer
  • moving shadow-bar pyranometer
  • pyrheliometer
  • sunshine recorder

Photovoltaic Technology: The Case for Thin-Film Solar Cells

Shah, A., Torres, P., Tscharner, R., Wyrsch, N. and Keppner, H., 1999. Photovoltaic technology: the case for thin-film solar cells. science, 285(5428), pp.692-698. [4]

  • not that useful(nothing new learned from this paper)

Solar power generation by PV (photovoltaic) technology: A review

Singh, G.K., 2013. Solar power generation by PV (photovoltaic) technology: A review. Energy, 53, pp.1-13. [5]

  • not so useful

Life cycle assessment of solar PV based electricity generation systems: A review

Sherwani, A.F. and Usmani, J.A., 2010. Life cycle assessment of solar PV based electricity generation systems: A review. Renewable and Sustainable Energy Reviews, 14(1), pp.540-544. [6]

  • Steps involved in fabrication of PV module
  • life cycle analysis of amorphous, mono crystalline and poly crystalline PV systems

Thin‐film solar cells: an overview

Chopra, K.L., Paulson, P.D. and Dutta, V., 2004. Thin‐film solar cells: an overview. Progress in Photovoltaics: Research and applications, 12(2‐3), pp.69-92. [7]

  • TFSC materials overview
  • manufacturing of TFSCs

Photovoltaic Technology: The Case for Thin-Film Solar Cells

Shah, A., Torres, P., Tscharner, R., Wyrsch, N. and Keppner, H., 1999. Photovoltaic technology: the case for thin-film solar cells. science, 285(5428), pp.692-698. [8]

  • not so useful

TCO and light trapping in silicon thin film solar cells

Müller, J., Rech, B., Springer, J. and Vanecek, M., 2004. TCO and light trapping in silicon thin film solar cells. Solar energy, 77(6), pp.917-930. [9]

  • TCO(transparent conductive oxides) films and their contribution in increasing efficiency

Thin-film Silicon Solar Cell Technology

Shah, A.V., Schade, H., Vanecek, M., Meier, J., Vallat‐Sauvain, E., Wyrsch, N., Kroll, U., Droz, C. and Bailat, J., 2004. Thin‐film silicon solar cell technology. Progress in photovoltaics: Research and applications, 12(2‐3), pp.113-142. [10]

  • optical and electrical TCO properties

Amorphous silicon solar cell

Carlson, D.E. and Wronski, C.R., 1976. Amorphous silicon solar cell. Applied Physics Letters, 28(11), pp.671-673. [11]

  • not so useful

Solar PV Integration Challenges

Katiraei, F. and Aguero, J.R., 2011. Solar PV integration challenges. IEEE Power and Energy Magazine, 9(3), pp.62-71. [12]

  • PV-DG systems(solar photovoltaic distributed generation)

Progress in solar PV technology: Research and achievement

Tyagi, V.V., Rahim, N.A., Rahim, N.A., Jeyraj, A. and Selvaraj, L., 2013. Progress in solar PV technology: Research and achievement. Renewable and sustainable energy reviews, 20, pp.443-461. [13]

  • overview of materials for PV
  • efficiencies comparision

Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations

Mani, M. and Pillai, R., 2010. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and sustainable energy reviews, 14(9), pp.3124-3131. [14]

  • climatic zones and conditions and their influence on PV performance

Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems

Denholm, P. and Margolis, R.M., 2007. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems. Energy policy, 35(5), pp.2852-2861. [15]

  • not so useful

Polymer solar cells

Li, G., Zhu, R. and Yang, Y., 2012. Polymer solar cells. Nature photonics, 6(3), p.153. [16]

  • deice structure of polymer solar cells

A review on photovoltaic/thermal hybrid solar technology

Chow, T.T., 2010. A review on photovoltaic/thermal hybrid solar technology. Applied energy, 87(2), pp.365-379. [17]

  • structure of PVT

Solar photovoltaic electricity: Current status and future prospects

Razykov, T.M., Ferekides, C.S., Morel, D., Stefanakos, E., Ullal, H.S. and Upadhyaya, H.M., 2011. Solar photovoltaic electricity: Current status and future prospects. Solar Energy, 85(8), pp.1580-1608. [18]

  • materials and their properties
  • market study

The Market Value and Cost of Solar Photovoltaic Electricity Production 2008

Borenstein, S., 2008. The market value and cost of solar photovoltaic electricity production. [19]

  • not so useful

Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review

Sharma, V. and Chandel, S.S., 2013. Performance and degradation analysis for long term reliability of solar photovoltaic systems: a review. Renewable and Sustainable Energy Reviews, 27, pp.753-767. [20]

  • study on PV module characteristics and rating

Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation

Laleman, R., Albrecht, J. and Dewulf, J., 2011. Life cycle analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation. Renewable and Sustainable Energy Reviews, 15(1), pp.267-281. [21]

  • not so useful

A comparison of the cost and financial returns for solar photovoltaic systems installed by businesses in different locations across the United States

Swift, K.D., 2013. A comparison of the cost and financial returns for solar photovoltaic systems installed by businesses in different locations across the United States. Renewable Energy, 57, pp.137-143. [22]

  • financial advantages and federal tax incentives

Hybrid PV/T solar systems for domestic hot water and electricity production

Kalogirou, S.A. and Tripanagnostopoulos, Y., 2006. Hybrid PV/T solar systems for domestic hot water and electricity production. Energy conversion and management, 47(18-19), pp.3368-3382. [23]

  • not that interesting

Solar gas turbine systems: Design, cost and perspectives

Schwarzbözl, P., Buck, R., Sugarmen, C., Ring, A., Crespo, M.J.M., Altwegg, P. and Enrile, J., 2006. Solar gas turbine systems: design, cost and perspectives. Solar Energy, 80(10), pp.1231-1240. [24]

  • what is Solar-hybrid gas turbine technology and its layout, optimization and performance calculation

Industrial application of PV/T solar energy systems

Kalogirou, S.A. and Tripanagnostopoulos, Y., 2007. Industrial application of PV/T solar energy systems. Applied Thermal Engineering, 27(8-9), pp.1259-1270. [25]

  • not that interesting

Measuring and modeling the effect of snow on photovoltaic system performance

Powers, L., Newmiller, J. and Townsend, T., 2010, June. Measuring and modeling the effect of snow on photovoltaic system performance. In Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE (pp. 000973-000978). IEEE. [26]

  • not so interesting

Measured and modeled photovoltaic system energy losses from snow for Colorado and Wisconsin locations

Marion, B., Schaefer, R., Caine, H. and Sanchez, G., 2013. Measured and modeled photovoltaic system energy losses from snow for Colorado and Wisconsin locations. Solar Energy, 97, pp.112-121. [27]

  • not much interesting

The influence of snow and ice coverage on the energy generation from photovoltaic solar cells

Andenæs, E., Jelle, B.P., Ramlo, K., Kolås, T., Selj, J. and Foss, S.E., 2018. The influence of snow and ice coverage on the energy generation from photovoltaic solar cells. Solar Energy, 159, pp.318-328. [28]

  • obstruction of solar radiation
  • efficiency

The effects of snowfall on solar photovoltaic performance

Andrews, R.W., Pollard, A. and Pearce, J.M., 2013. The effects of snowfall on solar photovoltaic performance. Solar Energy, 92, pp.84-97. [29]

  • crystalline vs amorphous cells in snow

A Low Cost Method of Snow Detection on Solar Panels and Sending Alerts

Meghdadi, S. and Iqbal, T., 2015. A low cost method of snow detection on solar panels and sending alerts. J. Clean Energy Technol, 3(5), pp.393-397. [30]

  • system design and layout

AN APPROACH TO THE IMPACT OF SNOW ON THE YIELD OF GRID CONNECTED PV SYSTEMS

Becker, G., Schiebelsberger, B., Weber, W., Vodermayer, C., Zehner, M. and Kummerle, G., 2006. An approach to the impact of snow on the yield of grid connected PV systems. Bavarian Association for the Promotion of Solar Energy, Munich. [31]

  • not so interesting

Instrumentation for Evaluating PV System Performance Losses from Snow

Marion, B., Rodriguez, J. and Pruett, J., 2009. Instrumentation for evaluating PV system performance losses from snow (No. NREL/CP-520-45380). National Renewable Energy Lab.(NREL), Golden, CO (United States). [32]

  • usage of pyranometer with heater

Effect of dust accumulation on the power outputs of solar photovoltaic modules

Adinoyi, M.J. and Said, S.A., 2013. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable energy, 60, pp.633-636. [33]

  • effect of dust accumulation over time

Effect of dust, humidity and air velocity on efficiency of photovoltaic cells

Mekhilef, S., Saidur, R. and Kamalisarvestani, M., 2012. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and sustainable energy reviews, 16(5), pp.2920-2925. [34]

  • effect of humidity on PV performance
  • effect of wind velocity on PV cell performance

Effect of dust on the transparent cover of solar collectors

Elminir, H.K., Ghitas, A.E., Hamid, R.H., El-Hussainy, F., Beheary, M.M. and Abdel-Moneim, K.M., 2006. Effect of dust on the transparent cover of solar collectors. Energy conversion and management, 47(18-19), pp.3192-3203. [35]

  • not so interesting

Effect Of Dust On The Performance Of Solar PV Panel

Rajput, D.S. and Sudhakar, K., 2013. Effect of dust on the performance of solar PV panel. Int J ChemTech Res, 5(2), pp.1083-6. [36]

  • formulae for reduction in power and efficiency

Effect of Dust Accumulation on Performance of Photovoltaic Solar Modules in Sahara Environment

Mohamed, A.O. and Hasan, A., 2012. Effect of dust accumulation on performance of photovoltaic solar modules in Sahara environment. Journal of Basic and applied scientific Research, 2(11), pp.11030-11036. [37]

  • effect of dust on PV performance despite being in a vast desert with enormous amount of sunlight and heat

The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy

Dincer, F., 2011. The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renewable and Sustainable Energy Reviews, 15(1), pp.713-720. [38]

  • contribution towards global solar power generation by major countries.

Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology

Tyagi, V.V., Kaushik, S.C. and Tyagi, S.K., 2012. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renewable and Sustainable Energy Reviews, 16(3), pp.1383-1398. [39]

  • imaging and non-imaging concentrating collectors

Microgrids: Experiences, barriers and success factors

Soshinskaya, M., Crijns-Graus, W.H., Guerrero, J.M. and Vasquez, J.C., 2014. Microgrids: Experiences, barriers and success factors. Renewable and Sustainable Energy Reviews, 40, pp.659-672. [40]

  • microgrid and types

Performance improvement of PV/T solar collectors with natural air flow operation

Tonui, J.K. and Tripanagnostopoulos, Y., 2008. Performance improvement of PV/T solar collectors with natural air flow operation. Solar Energy, 82(1), pp.1-12. [41]

  • not interesting

Photovoltaic thermal (PV/T) collectors: A review

Charalambous, P.G., Maidment, G.G., Kalogirou, S.A. and Yiakoumetti, K., 2007. Photovoltaic thermal (PV/T) collectors: A review. Applied thermal engineering, 27(2-3), pp.275-286. [42]

  • types of PV/T collectors and their performances

== 24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer == Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K. and Maruyama, E., 2014. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE Journal of Photovoltaics, 4(1), pp.96-99. [43]

  • heterojunction with intrinsic thin-layer solar cell and its structure


Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation

Hosenuzzaman, M., Rahim, N.A., Selvaraj, J., Hasanuzzaman, M., Malek, A.A. and Nahar, A., 2015. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable and Sustainable Energy Reviews, 41, pp.284-297. [44]

  • economic analysis and cost effectiveness

A review on global solar energy policy

Solangi, K.H., Islam, M.R., Saidur, R., Rahim, N.A. and Fayaz, H., 2011. A review on global solar energy policy. Renewable and sustainable energy reviews, 15(4), pp.2149-2163. [45]

  • policies and subsidies in different countries around the globe

Toward a Sunny Future? Global Integration in the Solar PV Industry

Kirkegaard, J.F., Hanemann, T., Weischer, L. and Miller, M., 2010. Toward a sunny future? Global integration in the solar PV industry. [46]

  • not so interesting

Analysis of the thermal performance and comfort conditions produced by five different passive solar heating strategies in the United States midwest

Fernández-González, A., 2007. Analysis of the thermal performance and comfort conditions produced by five different passive solar heating strategies in the United States Midwest. Solar Energy, 81(5), pp.581-593. [47]

  • not so interesting

Advanced Manufacturing Concepts for Crystalline Silicon Solar Cells

Nijs, J.F., Szlufcik, J., Poortmans, J., Sivoththaman, S. and Mertens, R.P., 1999. Advanced manufacturing concepts for crystalline silicon solar cells. IEEE Transactions on Electron Devices, 46(10), pp.1948-1969. [48]

  • bulk crystalline silicon substrates
  • screen printing
  • buried contact technology

Flexible Solar Cells

Pagliaro, M., Ciriminna, R. and Palmisano, G., 2008. Flexible solar cells. ChemSusChem: Chemistry & Sustainability Energy & Materials, 1(11), pp.880-891. [49]

  • inorganic this films

A Monitoring System for the Use of Solar Energy in Electric and Hybrid Electric Vehicles

Schuss, C., Eichberger, B. and Rahkonen, T., 2012, May. A monitoring system for the use of solar energy in electric and hybrid electric vehicles. In Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International (pp. 524-527). IEEE. [50]

  • not so interesting

Business Models for Solar Powered Charging Stations to Develop Infrastructure for Electric Vehicles

Robinson, J., Brase, G., Griswold, W., Jackson, C. and Erickson, L., 2014. Business models for solar powered charging stations to develop infrastructure for electric vehicles. Sustainability, 6(10), pp.7358-7387. [51]

  • public parking model
  • shopping center model
  • non-profit organization model
Cookies help us deliver our services. By using our services, you agree to our use of cookies.