Get our free book (in Spanish or English) on rainwater now - To Catch the Rain.

Solar distillation

From Appropedia
Jump to: navigation, search

Default.png    See also the Solar Distillation category.
for subtopics, how-tos, project pages, designs, organization pages and more.

Double-Pane Solar Still


Solar distillation is the use of solar energy to evaporate water and collect its condensate within the same closed system. Unlike other forms of water purification it can turn salt or brackish water into fresh drinking water (i.e. desalination). The structure that houses the process is known as a solar still and although the size, dimensions, materials, and configuration are varied, all rely on the simple procedure wherein an influent solution enters the system and the more volatile solvents leave in the effluent leaving behind the salty solute behind[1].

Solar distillation differs from other forms of desalination that are more energy-intensive, such as methods such as reverse osmosis, or simply boiling water due to its use of free energy.[2][3] A very common and, by far, the largest example of solar distillation is the natural water cycle that the Earth experiences.


Early Solar Still by Della Porta[4].

The earliest onset of solar energy use to desalinate water is widely accredited to Aristotle during the fourth century B.C.E.[4][5][6] [7] Earlier attributions reference the Bible & Moses’ use of a piece of wood to remove the “bitterness” from water (Exodus 15:25, English Standard Version). The first documented account of solar distillation use for desalination was by Giovani Batista Della Porta in 1958.[4]However, no solar distillation publication of any repute leaves out the Father of solar distillation, Carlos Wilson, the creator of the first modern sun-powered desalination plant, built in Las Salinas (The Salts), Chile in 1872.[4][7] [8] [9] [10] [11]

Carlos Wilson, Swedish Engineer[4]
This desalination plant,"can be considered to be the first industrial installation for exploitation of solar energy[11]." This desalination plant was envisioned to take advantage of the nearby saltpeter mining effluent to supply the miners and their families freshwater [4].The facility was quite large for its time and now:

"The plant was constructed of wood and timber framework covered with one sheet of glass. It consisted of 64 bays having a total surface area of 4450 m2 and a total land surface area of 7896 m2. It produced 22.70 m3 of fresh water per day. The plant was in operation for about 40 years until the mines were exhausted[4]."

Interest in solar distillation wavered for some time, until historical events prompted further research and development. World War II was a great catalyst for the Massachusetts Institute of Technology to develop appropriate solar stills for use in more remote areas of the world during emergencies. These small solar stills were made to float on and collect saltwater to desalt as they floated alongside life-boats and rafts[4]. More siginificant studies into solar distillation were carried out by the Office of Saline Water, a sector the US government, in 1952. Many experiments were performed on different conceptualizations of the solar still, including multiple-effect basins and the application of condensers[4]. This trend ended near the early 70's with the advent of more lucrative desalination techniques like the aforementioned reverse osmosis or multi-stage flash, a technique that involves a series of stages where evaporation relies on lowering the pressure of each stage to lower the boiling or "flashing" point of the water [12][13] Today, renewed enthusiasm for solar distillation comes from individuals, communities, and organizations seeking an appropriate technology that is cheap, simple, and conceivable in rural settings [14].


Simple Single-Effect Solar Still[15]
The fundamental aspects of a solar still have gone unchanged since ancient times, the simplicity of the design is one of the solar still’s chief benefits. However, there are many variations on the theme of the typical single slope/basin still and these can fall into one of two categories, active or passive. These labels classify the still by the method it uses to acquire the energy to drive the evaporation of the water. Passive solar stills are, of course, more conventional and have been the only ones discussed up to this point.
Types of Solar Stills[9]
Active stills, however, can obtain "waste" heat from a myriad of sources.

The main design challenge is keeping the distiller airtight. If not airtight, efficiency drops severely [7].

Often a shallow trough is used, painted black, and flooded. A slanted pane of glass covering, allowing condensed water vapor to slide down into an output channel. Expect 1 gallon per day per square meter of glass.

Another approach is molded plastic, e.g. the Watercone (see below). This has the advantage that it is can be more easily made airtight, and mass production should make it affordable.



Operation and Maintenance





Cost has been a major barrier to implementing this. Recent work using CPCs has shown that solar distillation can be economically viable in some locations.


The Watercone®[1] is a solar powered water desalinator. It is claimed to be simple to use, lightweight and mobile. It is designed to produce 1.5 liters a day.

The WATERCONE® is a long lasting UV resistant Poly Carbonate product and can be used up to 5 years daily. The material is non-toxic, non-flammable and 100% recyclable. The black pan for the saltwater is already made out of 100% recycled PC. Even when the WATERCONE® becomes old and tarnished, it can still be used to collect rain water, as a roof panel or container for other goods.
The Watercone® project is looking for investors and companies to initiate mass production tooling and distribution. So the Watercone can be manufactured for a lower price and become affordable to the people in need... Single products are not available at the moment![2]

Cost: The planned price is below € 20,[3]. Solar distillation needs to become much cheaper than this before it can achieve widespread use by the poor. The website states that this works out cheaper than bottled water at 50c per liter once it is used for a number of months; however the target market cannot afford to buy bottled water, so this is not a useful comparison. If they do buy water, it is more likely to be from water refill stations which charge around 3 c per liter in major cities in Asia. In isolated areas, the costs increase a lot, but they would need to increase far beyond 3c per liter to justify the investment by a poor person or family - especially when it would be difficult to guard against theft. Thus it looks like they’re only useful where safe water is exceptionally expensive, or simply unavailable. Even then, other options for purifying the water would need to be weighed up. If these things were mass-produced for more like 1 euro or less each, they might be an option for widespread use - and this would be a more reasonable price for mass-produced pieces of molded plastic (even if they are very cleverly designed pieces of molded plastic).

Watercone external links

Solar distillation in Mexico

Florence Cassassuce, of La Paz, Mexico, who invented a five-gallon bucket that can purify several days' worth of water in four minutes.

She was one of 18 people listed as one of CNN Heroes finalists in 2007.

This is her site.


Interwiki links

External links

Project links


  1. (2008). Desalination, a national perspective. National Research Council of the National Academies.
  2. Abu-Arabi, M. (2007). Status and prospects for solar desalination in the MENA region. Solar Desalination for the 21 st Century, 163-178.
  3. Paton, C., & Davies, P. (2006). The seawater greenhouse cooling, fresh water and fresh produce from seawater. In The 2nd International Conference on Water Resources in Arid Environments, Riyadh.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Delyannis, E. (2003). Historic background of desalination and renewable energies. Solar Energy, 75(5), 357-366.
  5. Tiwari, G. N., Singh, H. N., & Tripathi, R. (2003). Present status of solar distillation. Solar Energy, 75(5), 367-373.
  6. Velmurugan, V., & Srithar, K. (2011). Performance analysis of solar stills based on various factors affecting the productivity—A review. Renewable and Sustainable Energy Reviews, 15(2), 1294-1304.
  7. 7.0 7.1 7.2 Gordes, J., & McCracken, H. (1985). Understanding Solar Stills. Volunteers in Technical Assistance (VITA).
  8. Al-Hayeka, I., & Badran, O. O. (2004). The effect of using different designs of solar stills on water distillation. Desalination, 169(2), 121-127.
  9. 9.0 9.1 Goosen, M. F., Sablani, S. S., Shayya, W. H., Paton, C., & Al-Hinai, H. (2000). Thermodynamic and economic considerations in solar desalination. Desalination, 129(1), 63-89.
  10. Bouchekima, B. (2003). A small solar desalination plant for the production of drinking water in remote arid areas of southern Algeria. Desalination, 159(2), 197-204.
  11. 11.0 11.1 Hirschmann, J. R. (1975). Solar distillation in Chile. Desalination, 17(1), 31-67.
  12. El-Dessouky, H. T., Ettouney, H. M., & Al-Roumi, Y. (1999). Multi-stage flash desalination: present and future outlook. Chemical Engineering Journal, 73(2), 173-190.
  13. Fath, H. E. (1998). Solar distillation: a promising alternative for water provision with free energy, simple technology and a clean environment. Desalination, 116(1), 45-56.
  14. Eibling, J. A., Talbert, S. G., & Löf, G. O. G. (1971). Solar stills for community use—digest of technology. Solar energy, 13(2), 263-276.
  15. Ettouney, H., & Rizzuti, L. (2007). SOLAR DESALINATION: A CHALLENGE FOR SUSTAINABLE FRESH WATER IN THE 21 ST CENTURY. Solar Desalination for the 21 st Century, 1-18.

This topic needs a topic expert