Smart shade

From Appropedia
Jump to navigation Jump to search
Contribute to this Literature Review Although this page is hosted by MOST it is open edit. Please feel free to add sources and summaries. If you are new to Appropedia, you can start contributing after you create an account or log in if you have an existing account.
Open-pv.png This page is part of an MTU graduate course MY5490/EE5490: Solar Photovoltaic Science and Engineering. Both the course documentation and the course generated content is open source. However, the course runs over Spring semesters during this time it is not open edit. Please leave comments using the discussion tab.

Literature Review

  1. Joshua M, Pearce (2002-09). "Photovoltaics — a path to sustainable futures". Futures 34 (7): 663-674. doi:10.1016/S0016-3287(02)00008-3. ISSN 0016-3287.

    Abstract: As both population and energy use per capita increase, modern society is approaching physical limits to its continued fossil fuel consumption. The immediate limits are set by the planet’s ability to adapt to a changing atmospheric chemical composition, not the availability of resources. In order for a future society to be sustainable while operating at or above our current standard of living a shift away from carbon based energy sources must occur. An overview of the current state of active solar (photovoltaic, PV) energy technology is provided here to outline a partial solution for the environmental problems caused by accelerating global energy expenditure. The technical, social, and economic benefits and limitations of PV technologies to provide electricity in both off-grid and on-grid applications is critically analyzed in the context of this shift in energy sources. It is shown that PV electrical production is a technologically feasible, economically viable, environmentally benign, sustainable, and socially equitable solution to society’s future energy requirements.

    Key Features:
    • Useful for background/introduction information
    open access

  2. Kimball, J.W.; Kuhn, B.T.; Balog, R.S. (2009-04). "A System Design Approach for Unattended Solar Energy Harvesting Supply". Power Electronics, IEEE Transactions on 24 (4): 952-962. doi:10.1109/TPEL.2008.2009056. ISSN 0885-8993.

    Abstract: Remote devices, such as sensors and communications devices, require continuously available power. In many applications, conventional approaches are too expensive, too large, or unreliable. For short-term needs, primary batteries may be used. However, they do not scale up well for long-term installations. Instead, energy harvesting methods must be used. Here, a system design approach is introduced that results in a highly reliable, highly available energy harvesting device for remote applications. First, a simulation method that uses climate data and target availability produces Pareto curves for energy storage and generation. This step determines the energy storage requirement in watt-hours and the energy generation requirement in watts. Cost, size, reliability, and longevity requirements are considered to choose particular storage and generation technologies, and then to specify particular components. The overall energy processing system is designed for modularity, fault tolerance, and energy flow control capability. Maximum power point tracking is used to optimize solar panel performance. The result is a highly reliable, highly available power source. Several prototypes have been constructed and tested. Experimental results are shown for one device that uses multicrystalline silicon solar cells and lithium-iron-phosphate batteries to achieve 100% availability. Future designers can use the same approach to design systems for a wide range of power requirements and installation locations.

  3. Nasiri, A.; Zabalawi, S.A.; Mandic, G. (2009-11). "Indoor Power Harvesting Using Photovoltaic Cells for Low-Power Applications". Industrial Electronics, IEEE Transactions on 56 (11): 4502-4509. doi:10.1109/TIE.2009.2020703. ISSN 0278-0046.

    Abstract: Utilization of low-power indoor devices such as remote sensors, supervisory and alarm systems, distributed controls, and data transfer system is on steady rise. Due to remote and distributed nature of these systems, it is attractive to avoid using electrical wiring to supply power to them. Primary batteries have been used for this application for many years, but they require regular maintenance at usually hard to access places. This paper provides a complete analysis of a photovoltaic (PV) harvesting system for indoor low-power applications. The characteristics of a target load, PV cell, and power conditioning circuit are discussed. Different choices of energy storage are also explained. Implementation and test results of the system are presented, which highlights the practical issues and limitations of the system.

  4. Stephenson, D.G. (1964). "Equations for solar heat gain through windows". Solar Energy 9 (2): 81-86. Retrieved 2012-02-10.

    Key Features:
    • Calculates insolation empirically (20 stations in Scarborough, Ontario)
    • Similar Latitude (Scarborough: 43.78º, Houghton: 47.12º)
    • Variables: time, date, latitude, building orientation, type of glass, and shading
    • Equations for Direct Normal Insolation @ ground level (DNI)...
    • Isolation Charts

  5. Galasiu, Anca D; Morad R Atif, Robert A MacDonald (2004-01). "Impact of window blinds on daylight-linked dimming and automatic on/off lighting controls". Solar Energy 76 (5): 523-544. doi:10.1016/j.solener.2003.12.007. ISSN 0038092X. Retrieved 2012-02-10.

    Key Features:
    • Photo controlled lighting systems (variable lighting based off of PV sensing)
    • Possibly useful for future work section
    • lighting control systems found to be responsible for 50-60% reduction in energy consumption
    • Compares dimming systems and on/off systems
    • investigates numerous blinds configurations

  6. Boubekri, Mohamed; Robert B. Hull, Lester L. Boyer (1991-07-01). "Impact of Window Size and Sunlight Penetration on Office Workers' Mood and Satisfaction". Environment and Behavior 23 (4): 474 -493. doi:10.1177/0013916591234004. Retrieved 2012-02-10.

    Key Features:
    • Possibly useful for general discussion (Effects on users) and important information for controls, QC, reception, and design
    • Study investigates the impact of window size as well as assorted amounts of sunlight penetration's effect on occupant (user) emotional response and satisfaction
    • Interesting algebraic approach to determine mood
    • Trends for mood based on area of floor covered in sun

  7. Lee, E.S.; D.L. DiBartolomeo, S.E. Selkowitz (1998-12). "Thermal and daylighting performance of an automated venetian blind and lighting system in a full-scale private office". Energy and Buildings 29 (1): 47-63. doi:10.1016/S0378-7788(98)00035-8. ISSN 0378-7788.

    Key Features:
    • Study utilized automated Venetian blinds synchronized with a dimmable electric lighting system.
    • Report is very well written and may provide good introduction information
    • Contains room blueprints, list of monitored data...
    • Paper could be extremely useful for a basis for writing report

  8. Roisin, B.; M. Bodart, A. Deneyer, P. D. Herdt (2008). "Lighting energy savings in offices using different control systems and their real consumption". Energy and Buildings 40 (4): 514-523. doi:10.1016/j.enbuild.2007.04.006. ISSN 0378-7788.

    Key Features:
    • Simulations based off of DAYSIM
    • Estimates energy savings due to smart dimming of lights
    • Savings found to be between 45-61%
    • Possibly useful for future work and background information

  9. Christoph F., Reinhart (2004). "Lightswitch-2002: a model for manual and automated control of electric lighting and blinds". Solar Energy 77 (1): 15-28. doi:10.1016/j.solener.2004.04.003. ISSN 0038-092X.

    Key Features:
    • Proposes a simulation algorithm that predicts the switching patterns of lightswitches
    • References several papers on blind use that may be useful

  10. Newsham, G.r. (1994-05-01). "Manual Control of Window Blinds and Electric Lighting: Implications for Comfort and Energy Consumption". Indoor and Built Environment 3 (3): 135 -144. doi:10.1177/1420326X9400300307. Retrieved 2012-02-10.

    Key Features:
    • Paper examines impact of manual control of window blinds and lighting for a typical south-facing office room in Toronto, ON
    • Stresses user comfort over thermal efficiency

  11. Reinhart, Cf; K Voss (2003-09-01). "Monitoring manual control of electric lighting and blinds". Lighting Research and Technology 35 (3): 243-260. doi:10.1191/1365782803li064oa. ISSN 00000000 14771535, 00000000. Retrieved 2012-02-10.

    Key Features:
    • Builds off previous research paper
    • Probability of light switching based on illuminance

  12. Charron, Raemi; Andreas K. Athienitis (2006-05). "Optimization of the performance of double-facades with integrated photovoltaic panels and motorized blinds". Solar Energy 80 (5): 482-491. doi:10.1016/j.solener.2005.05.004. ISSN 0038-092X.

    Key Features:
    • System uses a double-facade system for energy capture - paper may be limited in usefulness

  13. Tilmann E., Kuhn (2006-06). "Solar control: A general evaluation method for facades with venetian blinds or other solar control systems". Energy and Buildings 38 (6): 648-660. doi:10.1016/j.enbuild.2005.10.002. ISSN 0378-7788.

    Key Features:
    • More-so a study of building design
    • Equation dense, may still be useful for energy calculations

  14. Roche, L (2002-03-01). "Summertime performance of an automated lighting and blinds control system". Lighting Research and Technology 34 (1): 11 -25. doi:10.1191/1365782802li026oa. Retrieved 2012-02-10.

    Key Features:
    • Automated blind and lighting control system
    • Shown to provide 60% less electric lighting
    • Higher importance on staying within an illumination band than thermal

  15. Tzempelikos, Athanassios; Andreas K. Athienitis (2007). "The impact of shading design and control on building cooling and lighting demand". Solar Energy 81 (3): 369 - 382. doi:10.1016/j.solener.2006.06.015. ISSN 0038-092X.

    Key Features:
    • Study done in Montreal, Quebec... daylight availability ratio tables
    • Another good option to base writing off of

  16. M., Zaheer-Uddin (1987). "The influence of automated window shutters on the design and performance of a passive solar house". Building and Environment 22 (1): 67-75. doi:10.1016/0360-1323(87)90043-6. ISSN 0360-1323.

    Key Features:

  17. Kachadorian, James (2006-07-31). The passive solar house. Chelsea Green Publishing. ISBN 9781933392035.

    Key Features:
    • Book about general passive house information (Do-It-Yourself type book)
    • Chapter about solar design calculations

  18. Li, Yanqiu; Hongyun Yu, Bo Su, Yonghong Shang (2008-06). "Hybrid Micropower Source for Wireless Sensor Network". IEEE Sensors Journal 8 (6): 678-681. doi:10.1109/JSEN.2008.922692. ISSN 1530-437X. Retrieved 2012-02-07.

    Key Features:
    • Utilizes a hybrid energy system (Li-ion batteries and ultracapacitors)
    • Entire paper on power source
    • Little design information

  19. Kimball, Jonathan W.; Brian T. Kuhn, Robert S. Balog (2009-04). "A System Design Approach for Unattended Solar Energy Harvesting Supply". IEEE Transactions on Power Electronics 24 (4): 952-962. doi:10.1109/TPEL.2008.2009056. ISSN 0885-8993. Retrieved 2012-02-07.

    Key Features:
    • Good Design flow diagrams
    • Good information on energy storage options
    • Well written, a good basis for energy information

  20. Glavin, M.; W.G. Hurley (2006-09). "Battery Management System for Solar Energy Applications". IEEE. pp. 79-83. doi:10.1109/UPEC.2006.367719. ISBN 978-186135-342-9. Retrieved 2012-02-08.

    Key Features:
    • Mentions a few different storage technologies (mostly nickel metal and ultracaps)
    • Some simple background on MPPTs
    • All around not a very detailed paper

  21. Brunelli, D.; C. Moser, L. Thiele, L. Benini (2009-11). "Design of a Solar-Harvesting Circuit for Batteryless Embedded Systems". IEEE Transactions on Circuits and Systems I: Regular Papers 56 (11): 2519-2528. doi:10.1109/TCSI.2009.2015690. ISSN 1558-0806 1549-8328, 1558-0806. Retrieved 2012-02-08.

    Key Features:
    • Uses an ultracapacitor
    • Section specifically about ultracapacitor analysis and problems
    • Section specifically about System problems (MPPT)

  22. Glavin, M.E.; Paul K.W. Chan, S. Armstrong, W.G. Hurley (2008-09). "A stand-alone photovoltaic supercapacitor battery hybrid energy storage system". IEEE. pp. 1688-1695. doi:10.1109/EPEPEMC.2008.4635510. ISBN 978-1-4244-1741-4. Retrieved 2012-02-08.

    Key Features:
    • Utilizes an ultracapacitor/battery hybrid system
    • Contains matlab model results for PV system, battery, and ultracapacitor
    • Purely theoretical

  23. Liu, Xiong; Peng Wang, Poh Chiang Loh, Feng Gao, Fook Hoong Choo (2010-09). "Control of hybrid battery/ultra-capacitor energy storage for stand-alone photovoltaic system". IEEE. pp. 336-341. doi:10.1109/ECCE.2010.5618014. ISBN 978-1-4244-5286-6. Retrieved 2012-02-08.

    Key Features:
    • Good DC/DC Converter schematic and calculations and results
    • Detailed information for power electronics design

  24. "Maxwell Technologies - Products - Ultracapacitors - K2 Series". Maxwell Technologies. Retrieved 2012-02-10.

    Key Features:
    • Data sheet for specified ultracapacitors

  25. Vasquez, Jose; Fernando Rodrigo, Jose Ruiz, Santiago Matilla. "Using Ultracapacitors in Photovoltaic Systems. A technical proposal". E.T.S.I.I. Valladolid University. Retrieved 2012-02-10.

    Key Features:
    • Not dated
    • Not published
    • Equation dense
    • May be able to use conclusion for background information

  26. Chiras, Daniel D. (2002). The solar house: passive heating and cooling. Chelsea Green Publishing. ISBN 9781931498128.

    Key Features:
    • Another book about general passive house information
    • More in depth approach
    • Section about best places in US for passive heating/cooling

  27. Enslin, J.H.R.; D.B. Snyman (1991-01). "Combined low-cost, high-efficient inverter, peak power tracker and regulator for PV applications". IEEE Transactions on Power Electronics 6 (1): 73-82. doi:10.1109/63.65005. ISSN 08858993. Retrieved 2012-02-10.

    Key Features:
    • Emphasises low cost
    • MPPT only
    • Schematics
    • AC application - may not be useful

  28. Alghuwainem, S.M. (1994-03). "Matching of a DC motor to a photovoltaic generator using a step-up converter with a current-locked loop". IEEE Transactions on Energy Conversion 9 (1): 192-198. doi:10.1109/60.282492. ISSN 08858969. Retrieved 2012-02-10.

    Key Features:
    • Applications load is a DC motor
    • Much higher power application

  29. Pandey, Ashish; Nivedita Dasgupta, Ashok K. Mukerjee (2007-03). "A Simple Single-Sensor MPPT Solution". IEEE Transactions on Power Electronics 22 (2): 698-700. doi:10.1109/TPEL.2007.892346. ISSN 0885-8993. Retrieved 2012-02-10.

    Key Features:
    • Introduces a method for simple MPPT algorithms
    • Regarded as costly
    • Analysis is very simple

  30. Enslin, J.H.R.. "Maximum power point tracking: a cost saving necessity in solar energy systems". IEEE. pp. 1073-1077. doi:10.1109/IECON.1990.149286. ISBN 0-87942-600-4. Retrieved 2012-02-10.

    Key Features:
    • Possible usage for background in paper
    • MPPT algorithm explained

  31. Esram, Trishan; Patrick L. Chapman (2007-06). "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques". IEEE Transactions on Energy Conversion 22 (2): 439-449. doi:10.1109/TEC.2006.874230. ISSN 0885-8969. Retrieved 2012-02-10.

    Key Features:
    • Well cited paper
    • Definitive paper for MPPT
    • Well defined problem statement

  32. Walker, Geoff (2001). "Evaluating MPPT converter topologies using a MATLAB PV model". Journal of Electrical Electronics Engineering 21 (1): 49-56.

    Key Features:
    • Theoretical approach
    • Includes model code
    • Presents MPPT equations

  33. Enslin, J.H.R.; M.S. Wolf, D.B. Snyman, W. Swiegers (1997-12). "Integrated photovoltaic maximum power point tracking converter". IEEE Transactions on Industrial Electronics 44 (6): 769-773. doi:10.1109/41.649937. ISSN 02780046. Retrieved 2012-02-10.

    Key Features:
    • MPPT schematics and results

  34. Simoes, M.G.; N.N. Franceschetti, M. Friedhofer. "A fuzzy logic based photovoltaic peak power tracking control". 1. IEEE. pp. 300-305. doi:10.1109/ISIE.1998.707796. ISBN 0-7803-4756-0. Retrieved 2012-02-10.

    Key Features:
    • Well documented algorithm (Fuzzy logic)

  35. Thulasiyammal, C.; S. Sutha (2011-01). "An efficient method of MPPT tracking system of a solar powered Uninterruptible Power Supply application". IEEE. pp. 233-236. doi:10.1109/ICEES.2011.5725334. ISBN 978-1-4244-9732-4. Retrieved 2012-02-10.

    Key Features:
    • 12v output
    • lacking methodology

  36. Sharaf, A.M.; E. Elbakush, I. H. Altas (2007-10). "Novel Control Strategies For Photovoltaic Powered PMDC Motor Drives". IEEE. pp. 461-466. doi:10.1109/EPC.2007.4520376. ISBN 978-1-4244-1444-4, 978-1-4244-1445-1. Retrieved 2012-02-10.

    Key Features:
    • PID controller for PV powered PMDC drives
    • Well documented simulation
    • Lacking on the PV side

  37. "Arduino motor/stepper/servo control - How to use". Retrieved 2012-02-10.

    Key Features:
    • Reference/requirements for small motor control using arduino microcontroller boards
    • May be useful resource for blind/shade actuation

  38. "Arduino playground - InterfacingWithHardware". Retrieved 2012-02-10.

    Key Features:
    • Resource for interfacing arduino microcontrollers with many types of hardware
    • Interfacing with temperature sensors potentially useful

  39. "Arduino playground - PIDLibrary". Retrieved 2012-02-10.

    Key Features:
    • Useful for PID control on arduino
    • contains libraries for PID functions

  40. Popat, Pradeep. "Patent US5760558 - Solar-powered, wireless, retrofittable, automatic controller for venetian blinds and similar window converings". Retrieved 2012-02-08.

    Key Features:
    • Patent
    • Good resource for control logic
    • Retrofittable

  41. Corazzini, Warren. "Patent US5413161 - Solar powered window shade". Retrieved 2012-02-08.

    Key Features:
    • Patent
    • Short

  42. Knowles, Byron (2008-07-02). "Motorized window shade". Retrieved 2012-02-10.

    Key Features:
    • Patent

  43. "Automatic Window Blinds Controller (PICAXE)". Retrieved 2012-02-10.

    Key Features:
    • Not published
    • DIY approach to an automated window blind
    • Uses a PIC microcontroller

  44. E., Bilgen (1994-01). "Experimental study of thermal performance of automated venetian blind window systems". Solar Energy 52 (1): 3-7. doi:10.1016/0038-092X(94)90076-E. ISSN 0038-092X.

    Key Features:
    • No MTU Access

  45. Raghunathan, Vijay; Kansal Aman, Jason Hsu, Jonathan Friedman, Mani Srivastava. Design considerations for solar energy harvesting wireless embedded systems. Proceedings of the 4th international symposium on Information processing in sensor networks. Retrieved 2012-02-07.

    Key Features:
    • interesting power densities of alternative energies table
    • MPPT background
    • Solar harvesting design section
    • Lacking schematics/diagrams
    • Applicable design considerations to smart shades project

  46. Hande, Abhiman; Todd Polk, William Walker, Dinesh Bhatia (2006-09-22). "Self-Powered Wireless Sensor Networks for Remote Patient Monitoring in Hospitals". Sensors 6 (9): 1102-1117. doi:10.3390/s6091102. ISSN 1424-8220. Retrieved 2012-02-08.

    Key Features:
    • Mostly implementation and lacking design

  47. Bhuvaneswari, P.T.V.; R. Balakumar, V. Vaidehi, P. Balamuralidhar (2009-07). "Solar Energy Harvesting for Wireless Sensor Networks". IEEE. pp. 57-61. doi:10.1109/CICSYN.2009.91. ISBN 978-0-7695-3743-6. Retrieved 2012-02-08.

    Key Features:
    • Builds off previous work
    • Circuit schematic included
    • Utilizes battery

  48. Simjee, Farhan; Pai H. Chou (2006-10). "Everlast: Long-life, Supercapacitor-operated Wireless Sensor Node". IEEE. pp. 197-202. doi:10.1109/LPE.2006.4271835. ISBN 1-59593-462-6. Retrieved 2012-02-08.

    Key Features:
    • Operates on supercapacitor
    • Equations and diagrams

  49. Hande, Abhiman; Todd Polk, William Walker, Dinesh Bhatia (2007-09-01). "Indoor solar energy harvesting for sensor network router nodes". Microprocessors and Microsystems 31 (6): 420-432. doi:10.1016/j.micpro.2007.02.006. ISSN 0141-9331.

    Key Features:
    • Similar to hospital paper, although better design
    • Limited application to smart shades

  50. Nasiri, A.; S.A. Zabalawi, G. Mandic (2009-11). "Indoor Power Harvesting Using Photovoltaic Cells for Low-Power Applications". IEEE Transactions on Industrial Electronics 56 (11): 4502-4509. doi:10.1109/TIE.2009.2020703. ISSN 0278-0046. Retrieved 2012-02-10.

    Key Features:
    • Limited information

  51. Thienpondt, Jorge; Sven Leyre, Jean-Pierre Goemaere, Lieven Strycker. "Energy Harvesting for Home Automation Applications". Catholic University College Sint Lieven. Retrieved 2012-02-10.

    Key Features:
    • Limited information

  52. Andersen, M.; B. Alvsten. "200 W low cost module integrated utility interface for modular photovoltaic energy systems". 1. IEEE. pp. 572-577. doi:10.1109/IECON.1995.483472. ISBN 0-7803-3026-9. Retrieved 2012-02-10.

    Key Features:
    • Some MPPT design
    • Limited applicable information