mNo edit summary
mNo edit summary
Line 1: Line 1:
{{MOST}}
{{MOST}}
{{MOST-RepRap}}


{{Statusboxtop}}
{{status-design}}
{{status-prototype}}
{{boxbottom}}


==Source==
==Source==
Line 9: Line 14:
==Abstract==
==Abstract==
Although the trend in manufacturing has been towards centralization to leverage economies of scale, the recent rapid technical development of open-source 3-D printers enables low-cost distributed bespoke production. This paper explores the potential advantages of a distributed manufacturing model of high-value products by investigating the application of 3-D printing to self-refraction eyeglasses. A series of parametric 3-D printable designs is developed, fabricated and tested to overcome limitations identified with mass-manufactured self-correcting eyeglasses designed for the developing world's poor. By utilizing 3-D printable self-adjustable glasses, communities not only gain access to far more diversity in product design, as the glasses can be customized for the individual, but 3-D printing also offers the potential for significant cost reductions. The results show that distributed manufacturing with open-source 3-D printing can empower developing world communities through the ability to print less expensive and customized self-adjusting eyeglasses. This offers the potential to displace both centrally manufactured conventional and self-adjusting glasses while completely eliminating the costs of the conventional optics correction experience, including those of highly-trained optometrists and ophthalmologists and their associated equipment. Although, this study only analyzed a single product, it is clear that other products would benefit from the same approach in isolated regions of the developing world.
Although the trend in manufacturing has been towards centralization to leverage economies of scale, the recent rapid technical development of open-source 3-D printers enables low-cost distributed bespoke production. This paper explores the potential advantages of a distributed manufacturing model of high-value products by investigating the application of 3-D printing to self-refraction eyeglasses. A series of parametric 3-D printable designs is developed, fabricated and tested to overcome limitations identified with mass-manufactured self-correcting eyeglasses designed for the developing world's poor. By utilizing 3-D printable self-adjustable glasses, communities not only gain access to far more diversity in product design, as the glasses can be customized for the individual, but 3-D printing also offers the potential for significant cost reductions. The results show that distributed manufacturing with open-source 3-D printing can empower developing world communities through the ability to print less expensive and customized self-adjusting eyeglasses. This offers the potential to displace both centrally manufactured conventional and self-adjusting glasses while completely eliminating the costs of the conventional optics correction experience, including those of highly-trained optometrists and ophthalmologists and their associated equipment. Although, this study only analyzed a single product, it is clear that other products would benefit from the same approach in isolated regions of the developing world.
==See also ==
* [[Self-adjustable glasses literature review]]
* [[Open-source Lab]]
* [[Open source optics]]
* [[Open source 3-D printing of OSAT]]
* [[Open-source hardware]]


[[Category:MOST completed projects and publications]]
[[Category:MOST completed projects and publications]]

Revision as of 01:49, 13 December 2014

Template:Statusboxtop Template:Status-design Template:Status-prototype Template:Boxbottom

Source

Custom-glass.png

Abstract

Although the trend in manufacturing has been towards centralization to leverage economies of scale, the recent rapid technical development of open-source 3-D printers enables low-cost distributed bespoke production. This paper explores the potential advantages of a distributed manufacturing model of high-value products by investigating the application of 3-D printing to self-refraction eyeglasses. A series of parametric 3-D printable designs is developed, fabricated and tested to overcome limitations identified with mass-manufactured self-correcting eyeglasses designed for the developing world's poor. By utilizing 3-D printable self-adjustable glasses, communities not only gain access to far more diversity in product design, as the glasses can be customized for the individual, but 3-D printing also offers the potential for significant cost reductions. The results show that distributed manufacturing with open-source 3-D printing can empower developing world communities through the ability to print less expensive and customized self-adjusting eyeglasses. This offers the potential to displace both centrally manufactured conventional and self-adjusting glasses while completely eliminating the costs of the conventional optics correction experience, including those of highly-trained optometrists and ophthalmologists and their associated equipment. Although, this study only analyzed a single product, it is clear that other products would benefit from the same approach in isolated regions of the developing world.

See also

Cookies help us deliver our services. By using our services, you agree to our use of cookies.