Source

  • Aubrey L. Woern, Joseph R. McCaslin, Adam M. Pringle, and Joshua M. Pearce. RepRapable Recyclebot: Open Source 3-D Printable Extruder for Converting Plastic to 3-D Printing Filament. HardwareX 4C (2018) e00026 doi: https://doi.org/10.1016/j.ohx.2018.e00026 open access
    • Just the code: OSF
    • FreeCAD users: On the OSF link above the entire assembly is available in the STP file. Open it in FreeCAD and pick what part you would like to modify, export it as .stp, and you will be left with just the part you need. Once you have that, you can save it as just about anything.
    • Smaller FreeCAD 55 MB version - compliments of Marcin at Open Source Ecology - removed all the nuts and bolts and screws
    • Please note that all the instructions are in the HardwareX article above

Updates and Improvements

Open Source Ecology Improvements

Abstract

Recyclebotrep.png

In order to assist researchers explore the full potential of distributed recycling of post-consumer polymer waste, this article describes a recyclebot, which is a waste plastic extruder capable of making commercial quality 3-D printing filament. The device design takes advantage of both the open source hardware methodology and the paradigm developed by the open source self-replicating rapid prototyper (RepRap) 3-D printer community. Specifically, this paper describes the design, fabrication and operation of a RepRapable Recyclebot, which refers to the Recyclebot’s ability to provide the filament needed to largely replicate the parts for the Recyclebot on any type of RepRap 3-D printer. The device costs less than $700 in mate rials and can be fabricated in about 24 h. Filament is produced at 0.4 kg/h using 0.24 kWh/kg with a diameter ±4.6%. Thus, filament can be manufactured from commercial pellets for <22% of commercial filament costs. In addition, it can fabricate recycled waste plastic into filament for 2.5 cents/kg, which is <1000X commercial filament costs. The system can fabricate filament from polymers with extrusion temperatures <250 °C and is thus capable of manufacturing custom filament over a wide range of thermopolymers and composites for material science studies of new materials and recyclability studies, as well as research on novel applications of fused filament based 3-D printing.

Keywords

Circular economy; Distributed recycling; Energy conservation; Polymer recycling; Sustainable development; distributed manufacturing; life cycle analysis; recycling; recyclebot; 3-D printing; polymer filament; Open source hardware; Open hardware; Fused filament fabrication; RepRap; Recycling; Polymers; Plastic; Recyclebot; Waste plastic; Composites; Polymer composites; Extruder; Upcycle;  Materials science

See Also

RepRapable Recyclebot
Error in widget YouTube: Unable to load template 'wiki:YouTube'

Literature Reviews

Powerrecyclebot.png

In the News

Cookies help us deliver our services. By using our services, you agree to our use of cookies.