mNo edit summary
mNo edit summary
Line 2: Line 2:
{{Pearce-pubs}}
{{Pearce-pubs}}
* Nupur Bihari, Smruti Prasad Dash, Karankumar C. Dhankani, Joshua M. Pearce. 3-D printable open source dual axis gimbal system for optoelectronic measurements. ''Mechatronics'' (in press) DOI: https://doi.org/10.1016/j.mechatronics.2018.07.005  
* Nupur Bihari, Smruti Prasad Dash, Karankumar C. Dhankani, Joshua M. Pearce. 3-D printable open source dual axis gimbal system for optoelectronic measurements. ''Mechatronics'' (in press) DOI: https://doi.org/10.1016/j.mechatronics.2018.07.005  
* Ismo T. S. Heikkinen, Christoffer Kauppinen, Zhengjun Liu, Sanja M. Asikainen, Steven Spoljaric, Jukka V. Seppälä, Hele Savin, and Joshua M. Pearce. Chemical Compatibility of Fused Filament Fabrication -based 3-D Printed Components with Solutions Commonly Used in Semiconductor Wet Processing.  ''Additive Manufacturing'' 23, pp. 99-107 (2018). DOI: https://doi.org/10.1016/j.addma.2018.07.015 [https://www.academia.edu/37171248/Chemical_Compatibility_of_Fused_Filament_Fabrication-based_3-D_Printed_Components_with_Solutions_Commonly_Used_in_Semiconductor_Wet_Processing open access]
* Aubrey L. Woern, Joseph R. McCaslin, Adam M. Pringle, and Joshua M. Pearce. RepRapable Recyclebot: Open Source 3-D Printable Extruder for Converting Plastic to 3-D Printing Filament. ''HardwareX'' 4C (2018) e00026 doi: https://doi.org/10.1016/j.ohx.2018.e00026 [https://www.academia.edu/36721604/RepRapable_Recyclebot_Open_source_3-D_printable_extruder_for_converting_plastic_to_3-D_printing_filament open access]
* Aubrey L. Woern, Joseph R. McCaslin, Adam M. Pringle, and Joshua M. Pearce. RepRapable Recyclebot: Open Source 3-D Printable Extruder for Converting Plastic to 3-D Printing Filament. ''HardwareX'' 4C (2018) e00026 doi: https://doi.org/10.1016/j.ohx.2018.e00026 [https://www.academia.edu/36721604/RepRapable_Recyclebot_Open_source_3-D_printable_extruder_for_converting_plastic_to_3-D_printing_filament open access]
* Wijnen, B., Sanders, P. & Pearce, J.M. Improved model and experimental validation of deformation in fused filament fabrication of polylactic acid. ''Progress in Additive Manufacturing'' (2018). https://doi.org/10.1007/s40964-018-0052-4 [http://em.rdcu.be/wf/click?upn=lMZy1lernSJ7apc5DgYM8dxkCJ58uC6sUJBELmvXe-2Bg-3D_0kPq7H8U8oZ-2BbewUQbTcX2-2Baa1e0xnHTsgPmOBwhRG-2FOEB-2BtNDBEW60E-2FPhOq8mmOZY3DoEmWUNqLX9MfuJrExZrRrtQpEBtj4rjQSEn-2F58bvHjZNRH1dMZLHUXym89-2FzDEkr4NJeQttTbDjGv7UY3MluvUUdkEgddTVZGUYEsN7u2x1CNIad7PjmRmTs0z9vFUgFlPQAPpoO-2BvQE3QMOMkn-2BJP68exmch452TnZx3OiDOC0vYOLcZZs8oaiSSCzr4ozoWoVZ1PQOgHipb3iEA-3D-3D temp open access]
* Wijnen, B., Sanders, P. & Pearce, J.M. Improved model and experimental validation of deformation in fused filament fabrication of polylactic acid. ''Progress in Additive Manufacturing'' (2018). https://doi.org/10.1007/s40964-018-0052-4 [http://em.rdcu.be/wf/click?upn=lMZy1lernSJ7apc5DgYM8dxkCJ58uC6sUJBELmvXe-2Bg-3D_0kPq7H8U8oZ-2BbewUQbTcX2-2Baa1e0xnHTsgPmOBwhRG-2FOEB-2BtNDBEW60E-2FPhOq8mmOZY3DoEmWUNqLX9MfuJrExZrRrtQpEBtj4rjQSEn-2F58bvHjZNRH1dMZLHUXym89-2FzDEkr4NJeQttTbDjGv7UY3MluvUUdkEgddTVZGUYEsN7u2x1CNIad7PjmRmTs0z9vFUgFlPQAPpoO-2BvQE3QMOMkn-2BJP68exmch452TnZx3OiDOC0vYOLcZZs8oaiSSCzr4ozoWoVZ1PQOgHipb3iEA-3D-3D temp open access]

Revision as of 21:42, 2 August 2018

Cookies help us deliver our services. By using our services, you agree to our use of cookies.