Literature Search on PV+CHP

  • Keep alphabetized list of references with notes after in the following format:

S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001) (hyperlinked title).

See also: User:J.M.Pearce/PV penetration level and PV and CHP hybrid systems‎

This is a list of refs for PV + CHP (also try solar/photovoltaic + combined heat and power/distributed generation/cogen/cogeneration...and all the various types of cogensystems) (use the word 'hybrid') - we are specifically looking for hybrid systems that combine solar photovoltaics with combined heat and power systems.

Expanding Photovoltaic Penetration with Residential Distributed Generation from Hybrid Solar Photovoltaic + Combined Heat and Power Systems

Abstract

The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in house power backup of residential scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV+CHP hybrid systems in order increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV+CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV generated electricity and CHP generated heat. A method to determine the maximum percent of PV generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV+CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five.

Dispatch Strategy and Model for Hybrid Photovoltaic and Combined Heating, Cooling, and Power Systems

Abstract

The advent of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. These hybrid systems enjoy a symbiotic relationship between components, but have large thermal energy wastes when operated to provide 100% of the electric load. In a novel hybrid system is proposed here of PV-trigeneration. In order to reduce waste from excess heat, an absorption chiller has been proposed to utilize the CHP-produced thermal energy for cooling of PV-CHP system. This complexity has brought forth entirely new levels of system dynamics and interaction that require numerical simulation in order to optimize system design. This paper introduces a dispatch strategy for such a system that accounts for electric, domestic hot water, space heating, and space cooling load categories. The dispatch strategy was simulated for a typical home in Vancouver and the results indicate an improvement in performance of over 50% available when a PV-CHP system also accounts for cooling. The dispatch strategy and simulation are to be used as a foundation for an optimization algorithm of such systems.

Optimizing Design of Household Scale Hybrid Solar Photovoltaic + Combined Heat and Power Systems for Ontario

  • P. Derewonko and J.M. Pearce, “Optimizing Design of Household Scale Hybrid Solar Photovoltaic + Combined Heat and Power Systems for Ontario”, Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, pp.1274-1279, 7-12 June 2009. Available [1] open access

Abstract

This paper investigates the feasibility of implementing a hybrid solar photovoltaic (PV) + combined heat and power (CHP) and battery bank system for a residential application to generate reliable base load power to the grid in Ontario. Deploying PV on a large­scale has a penetration level threshold due to the inherent power supply intermittency associated with the solar resource. By creating a hybrid PV+CHP system there is potential of increasing the PV penetration level. One year of one second resolution pyranometer data is analyzed for Kingston Ontario to determine the total amount of PV energy generation potential, the rate of change of PV power generation due to intermittent cloud cover, and the daily CHP run time required to supply reliable base load power to the grid using this hybrid system.This analysis found that the vast majority of solar energy fluctuations are small in magnitude and the worst case energy fluctuation can be accommodated by relatively inexpensive and simple storage with conventional lead ­acid batteries. For systems where the PV power rating is identical to the CHP unit, the CHP unit must run for more than twenty hours a day for the system to meet the base load requirement during the winter months. This provides a fortunate supply of heat, which can be used for the needed home heating. This paper provides analysis for a preliminary base line system.

Institutional-Scale Operational Symbiosis of Photovoltaic and Cogeneration Energy Systems

  • M. Mostofi, A. H. Nosrat, and J. M. Pearce, “Institutional-Scale Operational Symbiosis of Photovoltaic and Cogeneration Energy Systems” International Journal of Environmental Science and Technology 8(1), pp. 31-44, 2011. open access

Abstract

Due to the negative environmental effects of fossil fuel combustion there is a growing interest in both improved efficiency in energy management and a large-scale transition to renewable energy systems. Using both of these strategies, a large institutional-scale hybrid energy system is proposed here, which incorporates both solar photovoltaic (PV) energy conversion to supply renewable energy and cogeneration (cogen) to improve efficiency. In this case the PV reduces the run time for the cogen to meet load, particularly in peaking air conditioning times. In turn, however, the cogen system is used to provide power back up for the PV during the night and adverse weather conditions. To illustrate the operational symbiosis between these two technical systems, this paper provides a case study of a hybrid PV and cogeneration system for the Taleghani hospital in Tehran. Three design scenarios using only existing technologies for such a hybrid system are considered here: i) single cogen+PV, ii) double cogen+PV, iii) single cogen+PV+storage. Numerical simulations for PV and cogen performance both before and after incorporating improved thermal energy management and high efficiency lighting were considered. The results show that the total amount of natural gas required to provide for the hospitals needs could be lowered from the status quo by 55% for scenario 1 and 62% for both scenario 2 and 3, respectively. This significant improvement in natural gas consumption illustrates the potential of hybridizing solar photovoltaic systems and cogeneration systems on a large scale.

Improved Performance of Hybrid Photovoltaic-Trigeneration Systems

  • A.H. Nosrat, L.G. Swan, J.M. Pearce, "Improved Performance of Hybrid Photovoltaic-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage", Energy 49, pp. 366-374 (2013). DOI, open access.

Abstract

Recent work has proposed that hybridization of residential-scale cogeneration with roof-mounted solar PV (photovoltaic) arrays can increase the PV penetration level in ideal situations by a factor of five. In regions where there is a significant cooling load PV-cogen hybrid systems could be coupled to an absorption chiller to utilize waste heat from the cogen unit. In order to investigate realistic (non-ideal) loads that such a hybrid system would need to service, a new numerical simulation called PVTOM (PV-trigeneration optimization model) was created and coupled to the results of the established CHREM (Canadian Hybrid Residential End-Use Energy and Emissions Model). In this paper, PVTOM is applied to representative houses in select Canadian regions, which experience cooling loads, to assess the fuel utilization efficiency and reduction in greenhouse gas emissions from hybrid PV-cogen and trigen systems in comparison with conventional systems. Results of the optimization runs are provided and the efficacy of PV-cogen and PV-trigen systems is discussed. Both PV-trigen and PV-cogen systems have demonstrated to be more effective at reducing emissions when compared to the current combination of centralized power plants and household heating technologies in some regions.

Articles

  • International Energy Agency, "Combined Heat and Power: Evaluating the benefits of greater global investment", REDalert!, vol.3, Iss. 1, pp.?? (2008).[2]
    • NOTES:
      • Outlines the benefits of CHP and the G8 countries support for the deployment of CHP.
      • Figure of energy flows in the global electricity system (with waste heat and transmission losses, only one-third of energy is delivered to the end customer. (pp.6)
      • Includes a table of different power generation technologies with today's cost and an assumption of their cost in 2015-2030. (pp.33)
    • CONCLUSIONS:
      • 'CHP can reduce CO2 emissions from new generation in 2015 by more than 4% (170 Mt/yr), while in 2030 this saving increases to more than 10% (950 Mt/yr) - equivalent to one and a half times India's total annual emissions of CO2 from power generation.'

  • A.C. Oliveira, C. Afonso, J. Matos, S. Riffat, M. Nguyen and P. Doherty, "A Combined Heat and Power System for Buildings driven by Solar Energy and Gas", Applied Thermal Engineering, vol. 22, Iss. 6, pp. 587-593 (2002)[3]
    • NOTES:
      • The system presented in this paper is a novel hybrid solar/gas system. It can provide electricity, heating and cooling for buildings. It is based on the combination of an ejector cycle heat pump with a turbine/generator group and is powered by solar collectors supplemented by a gas burner, for periods of low solar radiation.
      • Two system prototype units were successfully built and tested. Cooling capacities up to 5 kW and electrical output up to 1.5 kW were achieved.

  • M. Thomson and D.G. Infield, "Network Power-Flow Analysis for a High Penetration of Distributed Generation", IEEE Transactions on Power Systems, vol.22, Iss. 3, pp.1157-1162 (2007). [4]
    • NOTES:
      • This paper discusses and analyses the impact of micro-generation (in particular, PV+CHP hybrid residential systems) on the voltage rise in a test-network in the UK.
      • The authors created an unbalanced load-flow engine using Matlab, which takes modelled load and generation data and saves the calculated voltages as minute-by-minute data for all nodes across the network.
      • 'we considered the European Standard, EN 50160, which states that, under normal operating conditions, all ten-minute mean values shall be within the range 195.5 V to 253 V. The 50% PV and 100% CHP scenarios, already discussed, lead to voltages that exceed this range, and thus, accommodating penetrations of this order would require some adjustment or re-engineering of network voltage control systems. The next two rows of Table I (30% PV and 23% CHP, respectively) show scenarios that would be acceptable under EN 50160 without any changes to voltage control systems.' (pp.1161)

  • D.P. Jenkins, J. Fletcher, D. Kane, "Model for Evaluating impact of battery storage on microgeneration systems in dwellings", source, vol.?, Iss. ?, pp.? (?). [5]

CHP Companies

This website has a large list of chp products with general specs [6]


Company: WhisperGen [7]

  • Stirling Engine Technology
    • SPECS:
      • Model: MkV AC Gas fired
      • Engine: 4 cylinder double-acting Stirling cycle
      • Outputs:
      • Electrical: Up to 1000W @ 230V AC
      • Thermal: heat output from 7.5-12kW
      • Fuel: 2nd family natural gas 2H, 2L, 2E
      • Power Connection: Grid-connected 4 pole induction generator, IEC plug and socket connections
      • Dimensions: 480mm (19”) x 560mm (22”) x 840mm (33”) (w x d x h)
      • Dry Weight: 137 kg (280lb)
      • Connections: Standard plumbing connections

Company: Honda MCHP [8]

  • 4-stroke Engine
    • SPECS:
      • Engine: Single cylinder
      • Outputs:
      • Electrical: 1.2 kW @240V AC
      • Thermal Output: 3.5 kW
      • Fuel: Natural Gas or Propane
      • Dimensions: 584.2mm x 381mm x 889mm (w x d x h)
      • Weight: 81.19 kg

Company: Capstone [9]

  • Microturbine
    • SPECS:
      • Engine: Microturbine
      • Outputs:
      • Electrical: 65 kW @ 400-480 V AC
      • Thermal Output: 74 kW or 120 kW (two models available)
      • Fuel: Natural Gas
      • Dimensions: 762mm x 2200mm x 2363mm (w x d x h)
      • Weight: 1364 kg
Cookies help us deliver our services. By using our services, you agree to our use of cookies.