Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament [1]

Abstract

The growth of desktop 3-D printer is driving an interest in recycled 3-D printer filament to reduce costs of distributed production. Life cycle analysis studies were performed on the recycling of high density polyethylene into filament suitable for additive layer manufacturing with 3-D printers. The conventional centralized recycling system for high population density and low population density rural locations was compared to the proposed in home, distributed recycling system. This system would involve shredding and then producing filament with an open-source plastic extruder from post-consumer plastics and then printing the extruded filament into usable, value-added parts and products with 3-D printers such as the open-source self replicating rapid prototyper, or RepRap. The embodied energy and carbon dioxide emissions were calculated for high density polyethylene recycling using SimaPro 7.2 and the database EcoInvent v2.0. The results showed that distributed recycling uses less embodied energy than the best-case scenario used for centralized recycling. For centralized recycling in a low-density population case study involving substantial embodied energy use for transportation and collection these savings for distributed recycling were found to extend to over 80%. If the distributed process is applied to the U.S. high density polyethylene currently recycled, more than 100 million MJ of energy could be conserved per annum along with the concomitant significant reductions in greenhouse gas emissions. It is concluded that with the open-source 3-D printing network expanding rapidly the potential for widespread adoption of in-home recycling of post-consumer plastic represents a novel path to a future of distributed manufacturing appropriate for both the developed and developing world with lower environmental impacts than the current system.

Notes

  • Calculation of waste energy and material resources from not Recycling HDPE.
  • Estimating the Energy use and the CO2 emission during the use of a RECYCLEBOT.
  • Estimating the time required for the filament extrusion.

Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas [2]

Abstract

Although the environmental benefits of recycling plastics are well established and most geographic locations within the U.S. offer some plastic recycling, recycling rates are often low. Low recycling rates are often observed in conventional centralized recycling plants due to the challenge of collection and transportation for high-volume low-weight polymers. The recycling rates decline further when low population density, rural and relatively isolated communities are investigated because of the distance to recycling centers makes recycling difficult and both economically and energetically inefficient. The recent development of a class of open source hardware tools (e.g. RecycleBots) able to convert post-consumer plastic waste to polymer filament for 3-D printing offer a means to increase recycling rates by enabling distributed recycling. In addition, to reducing the amount of plastic disposed of in landfills, distributed recycling may also provide low-income families a means to supplement their income with domestic production of small plastic goods. This study investigates the environmental impacts of polymer recycling. A life-cycle analysis (LCA) for centralized plastic recycling is compared to the implementation of distributed recycling in rural areas. Environmental impact of both recycling scenarios is quantified in terms of energy use per unit mass of recycled plastic. A sensitivity analysis is used to determine the environmental impacts of both systems as a function of distance to recycling centers. The results of this LCA study indicate that distributed recycling of HDPE for rural regions is energetically favorable to either using virgin resin or conventional recycling processes. This study indicates that the technical progress in solar photovoltaic devices, open-source 3-D printing and polymer filament extrusion have made distributed polymer recycling and upcycling technically viable.


Notes

  • Explaining the benefits of recycling plastics and its difference on the environment.
  • Development of tools for the same recycling process.
  • Eonomic effect of this recycling technique.

Mobile Open-Source Solar-Powered 3-D Printers for Distributed Manufacturing in Off-Grid Communities [3]

Abstract

Manufacturing in areas of the developing world that lack electricity severely restricts the technical sophistication of what is produced. More than a billion people with no access to electricity still have access to some imported higher-technologies; however, these often lack customization and often appropriateness for their community. Open source appropriate tech­nology (OSAT) can over­come this challenge, but one of the key impediments to the more rapid development and distri­bution of OSAT is the lack of means of production beyond a specific technical complexity. This study designs and demonstrates the technical viability of two open-source mobile digital manufacturing facilities powered with solar photovoltaics, and capable of printing customizable OSAT in any com­munity with access to sunlight. The first, designed for com­munity use, such as in schools or maker­spaces, is semi-mobile and capable of nearly continuous 3-D printing using RepRap technology, while also powering multiple computers. The second design, which can be completely packed into a standard suitcase, allows for specialist travel from community to community to provide the ability to custom manufacture OSAT as needed, anywhere. These designs not only bring the possibility of complex manufacturing and replacement part fabrication to isolated rural communities lacking access to the electric grid, but they also offer the opportunity to leap-frog the entire conventional manufacturing supply chain, while radically reducing both the cost and the environmental impact of products for developing communities.

Notes

  • A necessary change of Power Source in developing world.
  • Introduction of mobile designs based on solar photovoltaics.

Distributed manufacturing with 3-D printing: a case study of recreational vehicle solar photovoltaic mounting systems.[4]

Abstract

For the first time, low-cost open-source 3-D printing provides the potential for distributed manufacturing at the household scale of customized, high-value, and complex products. To explore the potential of this type of ultra-distributed manufacturing, which has been shown to reduce environmental impact compared to conventional manufacturing, this paper presents a case study of a 3-D printable parametric design for recreational vehicle (RV) solar photovoltaic (PV) racking systems. The design is a four-corner mounting device with the ability to customize the tilt angle and height of the standoff. This enables performance optimization of the PV system for a given latitude, which is variable as RVs are geographically mobile. The open-source 3-D printable designs are fabricated and analyzed for print time, print electricity consumption, mechanical properties, and economic costs. The preliminary results show distributed manufacturing of the case study product results in an order of magnitude reduction in economic cost for equivalent products. In addition, these cost savings are maintained while improving the functionality of the racking system. The additional electrical output for a case study RV PV system with improved tilt angle functionality in three representative locations in the U.S. was found to be on average over 20% higher than that for conventional mass-manufactured racking systems. The preliminary results make it clear that distributed manufacturing - even at the household level - with open-source 3-D printers is technically viable and economically beneficial. Further research is needed to expand the results of this preliminary study to other types of products.

Polymer recycling codes for distributed manufacturing with 3-D printers.[5]

Abstract

With the aggressive cost reductions for 3-D printing made available by the open-source self-replicating rapid prototypers (RepRaps) the economic advantage of custom distributed manufacturing has become substantial. In addition, the number of free designs is growing exponentially and the development and commercialization of the recyclebot (plastic extruders that fabricate 3-D printing filament from recycled or virgin materials) have greatly improved the material selection available for prosumer 3-D printer operators. These trends indicate that more individuals will manufacturer their own polymer products, however, there is a risk that an even larger fraction of polymer waste will not be recycled because it has not been coded. The current limited resin identification code available in the U.S. similarly restricts closing the loop on less popular polymers, which could hamper the environmental impact benefits of distributed manufacturing. This paper provides a solution for this challenge by (1) developing a recycling code model based off of the resin identification codes developed in China that is capable of expansion as more complex 3-D printing materials are introduced, (2) creating OpenSCAD scripts based on (1) to be used to print resin identification codes into products, (3) demonstrating the use of this functionality in a selection of products and polymer materials, and (4) outlining the software and policy tools necessary to make this application possible for widespread adoption. Overall the results showed that a far larger resin code identification system can be adopted in the U.S. to expand distributed recycling of polymers and manufacturing of plastic-based 3-D printed products.

Notes

  • Resin Identification OpenSCAD codes introduced in product designing
  • Need of Recycling Code models in market
  • Worldwide expansion of these ideas


Distributed recycling of waste polymer into RepRap feedstock[6]

Purpose – A low‐cost, open source, self‐replicating rapid prototyper (RepRap) has been developed, which greatly expands the potential user base of rapid prototypers. The operating cost of the RepRap can be further reduced using waste polymers as feedstock. Centralized recycling of polymers is often uneconomic and energy intensive due to transportation embodied energy. The purpose of this paper is to provide a proof of concept for high‐value recycling of waste polymers at distributed creation sites.

Design/methodology/approach – Previous designs of waste plastic extruders (also known as RecycleBots) were evaluated using a weighted evaluation matrix. An updated design was completed and the description and analysis of the design is presented including component summary, testing procedures, a basic life cycle analysis and extrusion results. The filament was tested for consistency of density and diameter while quantifying electricity consumption.

Findings – Filament was successfully extruded at an average rate of 90 mm/min and used to print parts. The filament averaged 2.805 mm diameter with 87 per cent of samples between 2.540 mm and 3.081 mm. The average mass was 0.564 g/100 mm length. Energy use was 0.06 kWh/m.

Practical implications – The success of the RecycleBot further reduces RepRap operating costs, which enables distributed in‐home, value added, plastic recycling. This has implications for municipal waste management programs, as in‐home recycling could reduce cost and greenhouse gas emissions associated with waste collection and transportation, as well as the environmental impact of manufacturing custom plastic parts.

Originality/value – This paper reports on the first technical evaluation of a feedstock filament for the RepRap from waste plastic material made in a distributed recycling device.



Evaluation of Potential Fair Trade Standards for an Ethical 3-D Printing Filament[7]

Abstract

Following the rapid rise of distributed additive manufacturing with 3-D printing has come the technical development of filament extruders and recyclebots, which can turn both virgin polymer pellets and post-consumer shredded plastic into 3-D filament. Similar to the solutions proposed for other forms of ethical manufacturing, it is possible to consider a form of ethical 3-D printer filament distribution being developed. There is a market opportunity for producing this ethical 3-D printer filament, which is addressed in this paper by developing an “ethical product standard” for 3-D filament based upon a combination of existing fair-trade standards and technical and life cycle analysis of recycled filament production and 3-D printing manufacturing. These standards apply to businesses that can enable the economic development of waste pickers and include i) minimum pricing, ii) fair trade premium, iii) labor standards, iv) environmental and technical standards, v) health and safety standards, and vi) social standards including those that cover discrimination, harassment, freedom of association, collective bargaining and discipline.


FabLabs, 3D-printing and degrowth – Democratisation and deceleration of production or a new consumptive boom producing more waste? [8]

Abstract

FabLabs are open high-tech workshops where individuals have the opportunity to develop and produce custom-made things which are not accessible by conventional industrial scale technologies . FabLabs are strongly connected to activities in social networks and the exchange of knowledge.The equipment of a FabLab typically consists of a 3D-printer, a laser cutter and a milling machine.for developing countries 3D printing holds a high potential to overcome the poor availability of spare parts, high-tech and customized objects.3 Thus the FabLab-movement affects one of the main ideas of sustainable development: balancing human welfare, fairness and participation on a global scale.



Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers [9]

Abstract

The recent development of open-source 3-D printers makes scaling of distributed additive-based manufacturing of high-value objects technically feasible and offers the potential for widespread proliferation of mechatronics education and participation. These self-replicating rapid prototypers (RepRaps) can manufacture approximately half of their own parts from sequential fused deposition of polymer feedstocks. RepRaps have been demonstrated for conventional prototyping and engineering, customizing scientific equipment, and appropriate technology-related manufacturing for sustainable development. However, in order for this technology to proliferate like 2-D electronic printers have, it must be economically viable for a typical household. This study reports on the life-cycle economic analysis (LCEA) of RepRap technology for an average US household. A new low-cost RepRap is described and the costs of materials and time to construct it are quantified. The economic costs of a selection of 20 open-source printable designs (representing less than 0.02% of those available), are typical of products that a household might purchase, are quantified for print time, energy, and filament consumption and compared to low and high Internet market prices for similar products without shipping costs. The results show that even making the extremely conservative assumption that the household would only use the printer to make the selected 20 products a year the avoided purchase cost savings would range from about $300 to $2000/year. Assuming the 25 h of necessary printing for the selected products is evenly distributed throughout the year these savings provide a simple payback time for the RepRap in 4 months to 2 years and provide an ROI between >200% and >40%. As both upgrades and the components that are most likely to wear out in the RepRap can be printed and thus the lifetime of the distributing manufacturing can be substantially increased the unavoidable conclusion from this study is that the RepRap is an economically attractive investment for the average US household already. It appears clear that as RepRaps improve in reliability, continue to decline in cost and both the number and assumed utility of open-source designs continues growing exponentially, open-source 3-D printers will become a mass-market mechatronic device.


Prototyping the Environmental Impacts of 3D Printing:
Claims and Realities of Additive Manufacturing [10]

Abstract

3D printing has the potential to become a disruptive technology by cutting down on the environmental and time costs associated with traditional manufacturing processes. For example, supply chains and product storage could essentially be eliminated if product design became entirely digital. Although 3D printing is potentially highly beneficial for the environment, awareness of 3D printing’s impact on the environment is essential for healthy development and should be addressed before the technology is used on an industrial scale. The purpose of this research is to discuss the environmental aspects of additive manufacturing. By objectively examining 3D printing sustainability claims and case studies, an understanding of 3D printings’ environmental effect on society will be made. The research takes an interdisciplinary approach, analyzing economic risks, carbon and ecological footprints, and how the field is currently regulated, in addition to how it may be regulated in the future. By using historical and market data, a clear understanding of the 3D printing market can be established. I will examine the various methods used to formulate the industry’s environmental impacts. By examining case studies, 3D printing’s environmental impact will be evaluated. Focusing on what current laws and regulations apply to 3D printing and what laws could be applied in the future, the research aims to understand how environmental costs are and should be minimized.


Applications of Open Source 3-D Printing on Small Farms [11]

Abstract

There is growing evidence that low-cost open-source 3-D printers can reduce costs by enabling distributed manufacturing of substitutes for both specialty equipment and conventional mass-manufactured products. The rate of 3-D printable designs under open licenses is growing exponentially and there arealready hundreds of designs applicable to small-scale organic farming. It has also been hypothesized that this technology could assist sustainable development in rural communities that rely on small-scale organic agriculture. To gauge the present utility of open-source 3-D printers in this organic farm context both in the developed and developing world, this paper reviews the current open-source designs available and evaluates the ability of low-cost 3-D printers to be effective at reducing the economic costs of farming.This study limits the evaluation of open-source 3-D printers to only the most-developed fused filament fabrication of the bioplastic polylactic acid (PLA). PLA is a strong biodegradable and recyclable thermoplastic appropriate for a range of representative products, which are grouped into five categories of prints: handtools, food processing, animal management, water management and hydroponics. The advantages and shortcomings of applying 3-D printing to each technology are evaluated. The results show a general izabletechnical viability and economic benefit to adopting open-source 3-D printing for any of the technologies, although the individual economic impact is highly dependent on needs and frequency of use on a specific farm. Capital costs of a 3-D printer may be saved from on-farm printing of a single advanced analytical instrument in a day or replacing hundreds of inexpensive products over a year. In order for the full potential of open-source 3-D printing to be realized to assist organic farm economic resiliency and self-sufficiency, future work is outlined in five core areas: designs of 3-D printable objects, 3-D printing materials, 3-Dprinters, software and 3-D printable repositories.

Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products [12]

Abstract

With the recent development of the RepRap, an open-source self-replicating rapid prototyper, low-cost three-dimensional (3D) printing is now a technically viable form of distributed manufacturing of polymer-based products. However, the aggregate environmental benefits of distributed manufacturing are not clear due to scale reductions and the potential for increases in embodied energy. To quantify the environmental impact of distributed manufacturing using 3D printers, a life cycle analysis was performed on three plastic products. The embodied energy and emissions from conventional large-scale production in low-labor cost countries and shipping are compared to experimental measurements on a RepRap with and without solar photovoltaic (PV) power fabricating products with acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). The results indicate that the cumulative energy demand of manufacturing polymer products can be reduced by 41–64% (55–74% with PV) and concomitant emission reductions using distributed manufacturing with existing low-cost open-source 3D printers when using <25% fill PLA. Less pronounced positive environmental results are observed with ABS, which demands higher temperatures for the print bed and extruder. Overall, the results indicate that distributed manufacturing using open-source 3D printers has the potential to have a lower environmental impact than conventional manufacturing for a variety of products.


The effects of PLA color on material properties of 3-D printed components [13]

Abstract

As the number of prosumer printers has expanded rapidly, they now make up the majority of the 3-D printer market and of these printers those in the open-source lineage of the RepRap also have expanded to dominate. Although still primarily used for prototyping or hobbyist production of low-value products, the RepRap has the capacity to be used for high-value distributed manufacturing. A recent study found that RepRap printed parts printed in realistic environmental conditions can match and even out perform commercial 3-D printers using proprietary FDM in terms of tensile strength with the same polymers. However, tensile strengths of the large sample set of RepRap prints fluctuated. In order to explain that fluctuation and better inform designers on RepRap print properties this study determines the effect of color and processing temperature on material properties of Lulzbot TAZ deposited PLA in various colors. Five colors (white, black, blue, gray, and natural) of commercially available filament processed from 4043D PLA is tested for crystallinity with XRD, tensile strength following ASTM D638 and the microstructure is evaluated with environmental scanning electron microscope. Results are presented showing a strong relationship between tensile strength and percent crystallinity of a 3-D printed sample and a strong relationship between percent crystallinity and the extruder temperature. Conclusions are drawn about the effects of color and processing temperature on the material properties of 3-D printed PLA to promote the open-source development of RepRap 3-D printing.


High-Efficiency Solar-Powered 3-D Printers for Sustainable Development [14]

Abstract

The release of the open source 3-D printer known as the RepRap (a self-Replicating Rapid prototyper) resulted in the potential for distributed manufacturing of products for significantly lower costs than conventional manufacturing. This development, coupled with open source-appropriate technology (OSAT), has enabled the opportunity for 3-D printers to be used for sustainable development. In this context, OSAT provides the opportunity to modify and improve the physical designs of their printers and desired digitally-shared objects. However, these 3-D printers require electricity while more than a billion people still lack electricity. To enable the utilization of RepRaps in off-grid communities, solar photovoltaic (PV)-powered mobile systems have been developed, but recent improvements in novel delta-style 3-D printer designs allows for reduced costs and improved performance. This study builds on these innovations to develop and experimentally validate a mobile solar-PV-powered delta 3-D printer system. It is designed to run the RepRap 3-D printer regardless of solar flux. The electrical system design is tested outdoors for operating conditions: (1) PV charging battery and running 3-D printer; (2) printing under low insolation; (3) battery powering the 3-D printer alone; (4) PV charging the battery only; and (5) battery fully charged with PV-powered 3-D printing. The results show the system performed as required under all conditions providing feasibility for adoption in off-grid rural communities. 3-D printers powered by affordable mobile PV solar systems have a great potential to reduce poverty through employment creation, as well as ensuring a constant supply of scarce products for isolated communities.


A novel approach to obviousness: An algorithm for identifying prior art concerning 3-D printing materials [15]

Abstract


With the development and commercialization of the recyclebot (plastic extruders that fabricate 3-D printing filament from recycled or virgin materials) and various syringe pump designs for self-replicating rapid prototypers (RepRaps), the material selection available for consumers who produce products using 3-D printers is expanding rapidly. This paper provides an open-source algorithm for identifying prior art for 3-D printing materials. Specifically this paper provides a new approach for determining obviousness in this technology area. The potential ramifications on both innovation and patent law in the 3-D printing technological space are discussed.


The case for open source appropriate technology [16]

Abstract

Much of the widespread poverty, environmental desecration, and waste of human life seen around the globe could be prevented by known (to humanity as a whole) technologies, many of which are simply not available to those that need it. This lack of access to critical information for sustainable development is directly responsible for a morally and ethically unacceptable level of human suffering and death. A solution to this general problem is the concept of open source appropriate technology or OSAT, which refers to technologies that provide for sustainable development while being designed in the same fashion as free and open source software. OSAT is made up of technologies that are easily and economically utilized from readily available resources by local communities to meet their needs and must meet the boundary conditions set by environmental, cultural, economic, and educational resource constraints of the local community. This paper explores both the open source and appropriate technology aspects of OSAT to create a paradigm, in which anyone can both learn how to make and use needed technologies free of intellectual property concerns. At the same time, anyone can also add to the collective open source knowledge ecosystem or knowledge commons by contributing ideas, designs, observations, experimental data, deployment logs, etc. It is argued that if OSAT continues to grow and takes hold globally creating a vibrant virtual community to share technology plans and experiences, a new technological revolution built on a dispersed network of innovators working together to create a just sustainable world is possible.


Open-source, self-replicating 3-D printer factory for small-business manufacturing [17]

Abstract

Additive manufacturing with 3-D printers may be a key technology enabler for entrepreneurs seeking to use disruptive innovations such as business models utilizing distributed manufacturing. Unlike centralized manufacturing, distributed manufacturing makes the parts and products (the prints) at (or closer to) the source of the demand, cutting out much of the traditional supply chain. Although many expect 3-D printing to take off at the household level and previous work has shown significant returns for those choosing to do so, there are still significant barriers to entry for typical consumers. Our analysis demonstrates that for an individual to make an abnormally high return on their investments in 3-D printers, they must serve others to achieve high utilization rates. The impetus to do so is created by a service that can undercut traditionally manufactured products due to affordability and customizability. Low-cost, open-source 3-D printers are now priced within range of individual entrepreneurs who can take advantage of the long tail of consumers with highly varied interests. The margin advantage, net present value, and return on investment (ROI) analysis provided herein could form the basis of thousands of new small-business ventures in the coming years


Combined low-cost, high-efficient inverter, peak power tracker and regulator for PV applications [18]

Abstract

A novel compound power converter that serves as a DC-to-AC inverter, maximum power point tracker (MPPT), and battery charger for stand-alone photovoltaic (PV) power systems is introduced. A theoretical analysis of the proposed converter is performed, and the results are compared with experimental results obtained from a 1.5 kW prototype. The overall cost of PV systems can thus be reduced by using load management control and efficiency-optimization techniques. Power flow through the converter is controlled by means of a combination of duty cycle and output frequency control. With load management, large domestic loads, such as single phase induction motors for water pumping, hold-over refrigerators, and freezers, can be driven by day at a much higher energy efficiency. This is due to the high efficiency of the inverter with high insolation, and because the inverter uses the energy directly from the solar array. The battery loss component is thus reduced.


Open-source development of solar photovoltaic technology [19]

Abstract

The rise of solar photovoltaic (PV) technology as a driver of rural electrification in the developing world and a contributor to climate change mitigation suggests that innovations enhancing PV efficiency and scalability could make considerable strides in reducing both poverty and greenhouse gas emissions. The nearly global access to the solar resource coupled to innovation-driven decreases in the costs of PV provides a path for a renewable energy source to accelerate sustainable development. Open-source software development has proven to produce reliable and innovative computer code at lower costs than proprietary software through sharing development responsibility with a large community of invested individuals. Concepts of open-source design have been applied to other fields in an attempt to reap the same benefits realized within software development; however, applying open-source strategies to solar PV research is uncommon. This paper reviews and examines how open-source design can be utilized to catalyze rapid innovation in the PV industry. The results show how successful open design and development methods can be created and utilized by identifying business models that provide PV researchers, turnkey suppliers and solar PV module manufacturers with the opportunity to utilize open-source design principles to accelerate innovation


Photovoltaic projects for decentralized power supply in India: A financial evaluation [20]

Abstract

The present study concentrates on photovoltaic (PV) projects for providing decentralized power supply in remote locations in India. Results of a techno-economic evaluation are presented. Some PV projects in the capacity range 1–110 kWp, that have either been implemented or are under implementation, have been considered. An analysis of the capital cost of the PV projects and sub-systems has been undertaken. Levelized unit cost of electricity (LUCE) has been estimated for eighteen select locations situated in different geographical regions of the country. The LUCE is found to vary in the range of Rs. 28.31–59.16/kW h (US$ 0.65–1.35/k Wh) for PV projects in the capacity range 1–25 kWp. In view of high unit cost of electricity from PV projects, need for financial incentives has been examined from the perspective of users. A sensitivity analysis has also been undertaken.


A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems [21]

Abstract

One of the most popular techniques of renewable energy generation is the installation of photovoltaic (PV) systems using sunlight to generate electrical power. There are many factors that affecting the operation and efficiency of the PV based electricity generation systems, such as PV cell technology, ambient conditions and selection of required equipment. There is no much study that presents all factors affecting efficiency and operation of the entire PV system, in the literature. This paper provides a detailed review of these factors and also includes suggestions for the design of more efficient systems. The presented detailed overview will be useful to people working on theory, design and/or application of photovoltaic based electricity generation systems.


Empirical investigation of the energy payback time for photovoltaic modules [22]

Abstract

Energy payback time is the energy analog to financial payback, defined as the time necessary for a photovoltaic panel to generate the energy equivalent to that used to produce it. This research contributes to the growing literature on net benefits of renewable energy systems by conducting an empirical investigation of as-manufactured photovoltaic modules, evaluating both established and emerging products. Crystalline silicon modules achieve an energy break-even in 3 to 4 years. At the current R&D pilot production rate (8% of capacity) the energy payback time for thin film copper indium diselenide modules is between 9 and 12 years, and in full production is ∼2 years. Over their lifetime, these solar panels generate 7 to 14 times the energy required to produce them. Energy content findings for the major materials and process steps are presented, and important implications for current research efforts and future prospects are discussed.

Life cycle assessment of photovoltaic electricity generation [23]

Abstract

The paper presents the results of a life cycle assessment (LCA) of the electric generation by means of photovoltaic panels. It considers mass and energy flows over the whole production process starting from silica extraction to the final panel assembling, considering the most advanced and consolidate technologies for polycrystalline silicon panel production. Some considerations about the production cycle are reported; the most critical phases are the transformation of metallic silicon into solar silicon and the panel assembling. The former process is characterised by a great electricity consumption, even if the most efficient conversion technology is considered, the latter by the use of aluminium frame and glass roofing, which are very energy-intensive materials. Moreover, the energy pay back time (EPBT) and the potential for CO2 mitigation have been evaluated, considering different geographic collocations of the photovoltaic plant with different values of solar radiation, latitude, altitude and national energetic mix for electricity production.


The viability of solar photovoltaics [24]

Abstract

This paper summaries the contributions to a special issue of Energy Policy aiming to assess the viability of solar photovoltaics (PVs) as a mainstream electricity supply technology for the 21st Century. It highlights the complex nature of such an assessment in which technical, economic, environmental, social, institutional and policy questions all play a part. The authors summarise briefly the individual contributions to the special issue and draw out a number of common themes which emerge from them, for example: the vast physical potential of PVs, the environmental and resource advantages of some PV technologies, and the fluidity of the market. Most of the authors accept that the current high costs will fall substantially in the coming decade as a result of improved technologies, increased integration into building structures and economies of scale in production. In spite of such reassurances, energy policy-makers still respond to the dilemma of PVs with some hesitancy and prefer to leave its evolution mainly in the hands of the market. This paper highlights two clear dangers inherent in this approach: firstly, that short-term cost convergence may not serve long-term sustainability goals; and secondly, that laggards in the race to develop new energy systems may find themselves faced with long-term penalties.

Industrial symbiosis of very large-scale photovoltaic manufacturing [25]

Abstract

In order to stabilize the global climate, the world's governments must make significant commitments to drastically reduce global greenhouse gas (GHG) emissions. One of the most promising methods of curbing GHG emissions is a world transition from fossil fuels to renewable sources of energy. Solar photovoltaic (PV) cells offer a technically sustainable solution to the projected enormous future energy demands. This article explores utilizing industrial symbiosis to obtain economies of scale and increased manufacturing efficiencies for solar PV cells in order for solar electricity to compete economically with fossil fuel-fired electricity. The state of PV manufacturing, the market and the effects of scale on both are reviewed. Government policies necessary to construct a multi-gigaWatt PV factory and complementary policies to protect existing solar companies are outlined and the technical requirements for a symbiotic industrial system are explored to increase the manufacturing efficiency while improving the environmental impact of PV. The results of the analysis show that an eight-factory industrial symbiotic system can be viewed as a medium-term investment by any government, which will not only obtain direct financial return, but also an improved global environment. The technical concepts and policy limitations to this approach were analyzed and it was found that symbiotic growth will help to mitigate many of the limitations of PV and is likely to catalyze mass manufacturing of PV by transparently demonstrating that large-scale PV manufacturing is technically feasible and reaches an enormous untapped market for PV with low costs.

Emissions from Photovoltaic Life Cycles [26]

Abstract

Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004–2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid.

Improved photovoltaic energy output for cloudy conditions with a solar tracking system [27]

Abstract

This work describes measurements of the solar irradiance made during cloudy periods in order to improve the amount of solar energy captured during such periods. It is well-known that 2-axis tracking, in which solar modules are pointed at the sun, improves the overall capture of solar energy by a given area of modules by 30–50% versus modules with a fixed tilt. On sunny days the direct sunshine accounts for up to 90% of the total solar energy, with the other 10% from diffuse (scattered) solar energy. However, during overcast conditions nearly all of the solar irradiance is diffuse radiation that is isotropically-distributed over the whole sky. An analysis of our data shows that during overcast conditions, tilting a solar module or sensor away from the zenith reduces the irradiance relative to a horizontal configuration, in which the sensor or module is pointed toward the zenith (horizontal module tilt), and thus receives the highest amount of this isotropically-distributed sky radiation. This observation led to an improved tracking algorithm in which a solar array would track the sun during cloud-free periods using 2-axis tracking, when the solar disk is visible, but go to a horizontal configuration when the sky becomes overcast. During cloudy periods we show that a horizontal module orientation increases the solar energy capture by nearly 50% compared to 2-axis solar tracking during the same period. Improving the harvesting of solar energy on cloudy days is important to using solar energy on a daily basis for fueling fuel-cell electric vehicles or charging extended-range electric vehicles because it improves the energy capture on the days with the lowest hydrogen generation, which in turn reduces the system size and cost.


A review of solar photovoltaic technologies [28]

Abstract

Global environmental concerns and the escalating demand for energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Solar energy is the most abundant, inexhaustible and clean of all the renewable energy resources till date. The power from sun intercepted by the earth is about 1.8 × 1011 MW, which is many times larger than the present rate of all the energy consumption. Photovoltaic technology is one of the finest ways to harness the solar power. This paper reviews the photovoltaic technology, its power generating capability, the different existing light absorbing materials used, its environmental aspect coupled with a variety of its applications. The different existing performance and reliability evaluation models, sizing and control, grid connection and distribution have also been discussed.


Solar photovoltaic electricity: Current status and future prospects [29]

Abstract

We review the technical progress made in the past several years in the area of mono- and polycrystalline thin-film photovoltaic (PV) technologies based on Si, III–V, II–VI, and I–III–VI2 semiconductors, as well as nano-PV. PV electricity is one of the best options for sustainable future energy requirements of the world. At present, the PV market is growing rapidly at an annual rate of 35–40%, with PV production around 10.66 GW in 2009. Si and GaAs monocrystalline solar cell efficiencies are very close to the theoretically predicted maximum values. Mono- and polycrystalline wafer Si solar cells remain the predominant PV technology with module production cost around $1.50 per peak watt. Thin-film PV was developed as a means of substantially reducing the cost of solar cells. Remarkable progress has been achieved in this field in recent years. CdTe and Cu(In,Ga)Se2 thin-film solar cells demonstrated record efficiencies of 16.5% and almost 20%, respectively. These values are the highest achieved for thin-film solar cells. Production cost of CdTe thin-film modules is presently around $0.76 per peak watt.



Increasing the solar photovoltaic energy capture on sunny and cloudy days [30]

Abstract

This report analyzes an extensive set of measurements of the solar irradiance made using four identical solar arrays and associated solar sensors (collectively referred to as solar collectors) with different tilt angles relative to the earth’s surface, and thus the position of the sun, in order to determine an optimal tracking algorithm for capturing solar radiation. The study included a variety of ambient conditions including different seasons and both cloudy and cloud-free conditions. One set of solar collectors was always approximately pointed directly toward the sun (DTS) for a period around solar noon. These solar collectors thus captured the direct beam component of the solar radiation that predominates on sunny days. We found that on sunny days, solar collectors with a DTS configuration captured more solar energy in accordance with the well-known cosine dependence for the response of a flat-surfaced solar collector to the angle of incidence with direct beam radiation. In particular, a DTS orientation was found to capture up to twice as much solar energy as a horizontal (H) orientation in which the array is tilted toward the zenith. Another set of solar collectors always had an H orientation, and this best captured the diffuse component of the solar radiation that predominates on cloudy days. The dependence of the H/DTS ratio on the solar-collector tilt angle was in approximate agreement with the Isotropic Diffuse Model derived for heavily overcast conditions. During cloudy periods, we found that an H configuration increased the solar energy capture by nearly 40% compared to a DTS configuration during the same period, and we estimate the solar energy increase of an H configuration over a system that tracks the obscured solar disk could reach 50% over a whole heavily-overcast day. On an annual basis the increase is predicted to be much less, typically only about 1%, because the contribution of cloudy days to the total annual solar energy captured by a photovoltaic system is small. These results are consistent with the solar tracking algorithm optimized for cloudy conditions that we proposed in an earlier report and that was based on a much smaller data set. Improving the harvesting of solar energy on cloudy days deserves wider attention due to increasing efforts to utilize renewable solar energy. In particular, increasing the output of distributed solar power systems on cloudy days is important to developing solar-powered home fueling and charging systems for hydrogen-powered fuel-cell electric and battery-powered vehicles, respectively, because it reduces the system size and cost for solar power systems that are designed to have sufficient energy output on the worst (cloudy) days.


A review of solar photovoltaic levelized cost of electricity [31]

Abstract

As the solar photovoltaic (PV) matures, the economic feasibility of PV projects is increasingly being evaluated using the levelized cost of electricity (LCOE) generation in order to be compared to other electricity generation technologies. Unfortunately, there is lack of clarity of reporting assumptions, justifications and degree of completeness in LCOE calculations, which produces widely varying and contradictory results. This paper reviews the methodology of properly calculating the LCOE for solar PV, correcting the misconceptions made in the assumptions found throughout the literature. Then a template is provided for better reporting of LCOE results for PV needed to influence policy mandates or make invest decisions. A numerical example is provided with variable ranges to test sensitivity, allowing for conclusions to be drawn on the most important variables. Grid parity is considered when the LCOE of solar PV is comparable with grid electrical prices of conventional technologies and is the industry target for cost-effectiveness. Given the state of the art in the technology and favourable financing terms it is clear that PV has already obtained grid parity in specific locations and as installed costs continue to decline, grid electricity prices continue to escalate, and industry experience increases, PV will become an increasingly economically advantageous source of electricity over expanding geographical regions.


Photovoltaics: A review of cell and module technologies [32]

Abstract

This review centers on the status, and future directions of the cell and module technologies, with emphasis on the research and development aspects. The framework is established with a consideration of the historical parameters of photovoltaics and each particular technology approach. The problems and strengths of the single-crystal, polycrystalline, and amorphous technologies are discussed, compared, and assessed. Single- and multiple junction or tandem cell configurations are evaluated for performance, processing, and engineering criteria. Thin-film technologies are highlighted as emerging, low-cost options for terrestrial applications and markets. Discussions focus on the fundamental building block for the photovoltaic system, the solar cell, but important module developments and issues are cited. Future research and technology directions are examined, including issues that are considered important for the development of the specific materials, cell, and module approaches. Novel technologies and new research areas are surveyed as potential photovoltaic options of the future.


An evaluation on the life cycle of photovoltaic energy system considering production energy of off-grade silicon [33]

Abstract

In this study, single-crystalline silicon (c-Si) photovoltaic (PV) cells and residential PV systems using off-grade silicon supplied from semiconductor industries were evaluated from a life cycle point of view. Energy payback time (EPT) of the residential PV system with the c-Si PV cells made of the off-grade silicon was estimated at 15.5 years and indirect CO2 emission per unit electrical output was calculated at 91 g-C/kWh even in the worst case. These figures were more than those of the polycrystalline-Si and the amorphous-Si PV cells to be used in the near future, but the EPT was shorter than its lifetime and the indirect CO2 emissions were less than the recent average CO2 emissions per kWh from the utilities in Japan. The recycling of the c-Si PV cells should be discussed for the reason of the effective use of energy and silicon material.


Development of high efficiency hybrid PV-thermal modules [34]

Abstract

A hybrid system is described that combines the features of two solar technologies-photovoltaic conversion to electricity (PV), and thermal conversion to heat (T)-into a single high efficiency PV/T module for integrated building solar energy systems. The technical approach uses TerraSolar's low cost a-Si thin film solar cell modules, based on EPV technology, integrating them into hybrid flat plate PV/T modules. Initial measurements are described that demonstrates the concept of a hybrid system that uses a transparent PV module to replace the cover glass in a glazed thermal collector.


Economic analysis of hybrid photovoltaic/thermal solar systems and comparison with standard PV modules [35]

Abstract

Most of the absorbed solar radiation by solar cells is not converted into electricity it increases their temperature, reducing their electrical efficiency. The PV temperature can be lowered by heat extraction with a proper natural or forced fluid circulation. An interesting alternative to plain PV modules is to use Hybrid Photovoltaic/Thermal (PV/T) systems, which consist of PV modules coupled to heat extraction devices, providing electricity and heat simultaneously. Hybrid PV/T systems are of higher cost than standard PV modules because of the addition of the thermal unit and therefore a cost/benefit analysis is needed to find out the limits of practical use of these. A couple of typical applications are selected in order to assess the benefits for the users of hybrid PV/T systems comparing the payback time with PV systems and Solar thermal ones, under the current support schemes and conditions in Greece. A spreadsheet was developed that calculates on an hourly basis the annual energy output of the different systems. Furthermore, the energy output and the estimated system costs per surface area are introduced in an economic analysis spreadsheet, where the payback time for each system is calculated.


Recent developments in photovoltaics [36]

Abstract

The photovoltaic market is booming with over 30% per annum compounded growth over the last five years. The government-subsidised urban–residential use of photovoltaics, particularly in Germany and Japan, is driving this sustained growth. Most of the solar cells being supplied to this market are ‘first generation’ devices based on crystalline or multi-crystalline silicon wafers. ‘Second generation’ thin-film solar cells based on amorphous silicon/hydrogen alloys or polycrystalline compound semiconductors are starting to appear on the market in increasing volume. Australian contributions in this area are the thin-film polycrystalline silicon-on-glass technology developed by Pacific Solar and the dye sensitised nanocrystalline titanium cells developed by Sustainable Technologies International. In these thin-film approaches, the major material cost component is usually the glass sheet onto which the film is deposited. After reviewing the present state of development of both cell and application technologies, the likely future development of photovoltaics is outlined.


Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations [37]

Abstract

In this work some results of theoretical analysis on the selection of optimum band gap semiconductor absorbers for application in either single or multijunction (up to five junctions) solar cells are presented. For calculations days have been taken characterized by various insolation and ambient temperature conditions defined in the draft of the IEC 61836 standard (Performance testing and energy rating of terrestrial photovoltaic modules) as a proposal of representative set of typical outdoor conditions that may influence performance of photovoltaic devices. Besides various irradiance and ambient temperature ranges, these days additionally differ significantly regarding spectral distribution of solar radiation incident onto horizontal surface. Taking these spectra into account optimum energy band gaps and maximum achievable efficiencies of single and multijunction solar cells made have been estimated. More detailed results of analysis performed for double junction cell are presented to show the effect of deviations in band gap values on the cell efficiency.



The real environmental impacts of crystalline silicon PV modules: an analysis based on up-to-date manufacturers data [38]

Abstract

Together with a number of PV companies an extensive effort has been made to collect Life Cycle Inventory data that represents the current status of production technology for crystalline silicon modules. The new data covers all processes from silicon feed-stock production to cell and module manufacturing. All commercial wafer technologies are covered, that is multi- and mono-crystalline wafers as well as ribbon technology. The presented data should be representative for the technology status in 2004, although for mono-crystalline Si crystallisation further improvement of the data quality is recommended. On the basis of the new data it is shown that PV systems on the basis of c-Si technology are in a good position to compete with other energy technologies. Energy Pay-Back Times of 1.5-2.5 yr are found for South-European locations, while life-cycle CO2 emission is in the 25-40 g/kWh range. Clear perspectives exist for further improvements with roughly 25%.


Reduction of the environmental impacts in crystalline silicon module manufacturing [39]

Abstract

In this paper we review the most important options to reduce environmental impacts of crystalline silicon modules. We investigate which are the main barriers for implementation of the measure. Finally we review which measures to reduce environmental impacts could also lead to a cost reduction. Reduction of silicon consumption is a measure which will significantly reduce environmental impacts and at the same time has a cost reduction potential. Silicon feedstock processes with lower energy consumption such as Fluidized Bed Reactor technology, also have a large impact reduction potential. Together these two options can reduce the Energy Pay-Back Time of a PV installation (in South-Europe) to values well below 1 year. Other improvement options are identified in crystal growing and cell and module manufacturing. A number of options is likely to be implemented as soon as technological barriers are overcome because they lead to cost advantages next to environmental impact reductions. In addition there are also several environmental improvement options that are not or less clearly linked to a cost reduction. In these cases it will depend on the policy of companies or on government ruling, whether such “best available technologies” will be implemented or not.


Exergetic life cycle assessment of a grid-connected, polycrystalline silicon photovoltaic system [40]

Abstract

Purpose: Nowadays, the intensive use of natural resources in order to satisfy the increasing energy demand suggests a threat to the implementation of the principles of sustainable development. The present study attempts to approach thermodynamically the depletion of natural resources in the methodological framework and the principles of life cycle assessment (LCA). Methods: An environmental decision support tool is studied, the exergetic life cycle assessment (ELCA). It arises from the convergence of the LCA and exergy analysis (EA) methodologies and attempts to identify the exergetic parameters that are related to the life cycle of the examined system or process. The ELCA methodology, beside the fact that it locates the system parts which involve greater exergy losses, examines the depletion of natural resources (biotic and abiotic) and the sustainable prospective of the examined system or process, under the scope of exergy. In order to obtain concrete results, the ELCA methodology is applied to a large-scale, grid-connected, photovoltaic (PV) system with energy storage that is designed to entirely electrify the Greek island of Nisyros. Results and discussion: Four discerned cases were studied that reflect the present state and the future development of the PV technology. The exergy flows and balance for the life cycle of the PV system, as they were formed in the ELCA study, showed that the incoming exergy (solar radiation, energy sources, and materials) is not efficiently utilized. The greater exergy losses appear at the stage of the operation of the PV installation. Due to the fact that contribution of the renewable exergy (solar radiation) to the formation of the total incoming exergy of Life Cycle is significant, it emerges that satisfaction of electric power needs with a PV system appears to be exergetic sustainable. The increase of the Life Cycle exergetic efficiency supported by the future technological scenario in contrast to present scenarios emerges from the increased electricity output of the PV system. Consequently, the increased exergetic efficiency involves decreased irreversibility (exergy losses) of the PV system’s life cycle. Conclusions: The application of ELCA in electricity production technologies exceeds the proven sustainable prospective of the PV systems; however, it aims to show the essence of the application of ELCA methodology in the environmental decision making process. ELCA can be a useful tool for the support and formation of the environmental decision making that can illustrate in terms of exergetic sustainability the examined energy system or process.


Design optimization of photovoltaic powered water pumping systems[41]

Abstract

The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump–motor–hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible.

Reversing the Trend of Large Scale and Centralization in Manufacturing: The Case of Distributed Manufacturing of Customizable 3-D-Printable Self-Adjustable Glasses [42]

Abstract

Although the trend in manufacturing has been towards centralization to leverage economies of scale, the recent rapid technical development of open-source 3-D printers enables low-cost distributed bespoke production. This paper explores the potential advantages of a distributed manufacturing model of high-value products by investigating the application of 3-D printing to self-refraction eyeglasses. A series of parametric 3-D printable designs is developed, fabricated and tested to overcome limitations identified with mass-manufactured self-correcting eyeglasses designed for the developing world's poor. By utilizing 3-D printable self-adjustable glasses, communities not only gain access to far more diversity in product design, as the glasses can be customized for the individual, but 3-D printing also offers the potential for significant cost reductions. The results show that distributed manufacturing with open-source 3-D printing can empower developing world communities through the ability to print less expensive and customized self-adjusting eyeglasses. This offers the potential to displace both centrally manufactured conventional and self-adjusting glasses while completely eliminating the costs of the conventional optics correction experience, including those of highly-trained optometrists and ophthalmologists and their associated equipment. Although, this study only analyzed a single product, it is clear that other products would benefit from the same approach in isolated regions of the developing world.


Prototyping the Environmental Impacts of 3D Printing:
Claims and Realities of Additive Manufacturing [43]

Abstract

3D printing has the potential to become a disruptive technology by cutting down on the environmental and time costs associated with traditional manufacturing processes. For example, supply chains and product storage could essentially be eliminated if product design became entirely digital. Although 3D printing is potentially highly beneficial for the environment, awareness of 3D printing’s impact on the environment is essential for healthy development and should be addressed before the technology is used on an industrial scale. The purpose of this research is to discuss the environmental aspects of additive manufacturing. By objectively examining 3D printing sustainability claims and case studies, an understanding of 3D printings’ environmental effect on society will be made. The research takes an interdisciplinary approach, analyzing economic risks, carbon and ecological footprints, and how the field is currently regulated, in addition to how it may be regulated in the future. By using historical and market data, a clear understanding of the 3D printing market can be established. I will examine the various methods used to formulate the industry’s environmental impacts. By examining case studies, 3D printing’s environmental impact will be evaluated. Focusing on what current laws and regulations apply to 3D printing and what laws could be applied in the future, the research aims to understand how environmental costs are and should be minimized.

Reliability Issues in Photovoltaic Power Processing Systems [44]

Abstract

Power processing systems will be a key factor of future photovoltaic (PV) applications. They will play a central role in transferring, to the load and/or to the grid, the electric power produced by the high-efficiency PV cells of the next generation. In order to come up the expectations related to the use of solar energy for producing electrical energy, such systems must ensure high efficiency, modularity, and, particularly, high reliability. The goal of this paper is to provide an overview of the open problems related to PV power processing systems and to focus the attention of researchers and industries on present and future challenges in this field.


A case study of solar photovoltaic power system at Sagardeep Island, India [45]

Abstract

The application of renewable energy in electric power system is growing fast. Photovoltaic and wind energy sources are being increasingly recognized as cost-effective generation sources for remote rural area isolated power system. This paper presents the performance analysis of solar photovoltaic (SPV) system installed at Sagardeep Island in West Bengal state of India. The technical and commercial parameters are used to carry out the performance analysis. The effect of the SPV installation on social life is also studied. SPV installations not only provide electricity to people but also raised their standard of living.


Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si [46]

Abstract

The paper is concerned with the results of a thorough energy and life cycle assessment (LIA) of CdTe and CIS photovoltaic modules. The analysis is based on actual production data, making it one of the very first of its kind to be presented to the scientific community, and therefore especially worthy of attention as a preliminary indication of the future environmental impact that the up-scaling of thin film module production may entail. The analysis is consistent with the recommendations provided by ISO norms 14040 and updates, and makes use of an in-house developed multi-method impact assessment method named SUMMA, which includes resource demand indicators, energy efficiency indicators, and “downstream” environmental impact indicators. A comparative framework is also provided, wherein electricity produced by thin film systems such as the ones under study is set up against electricity from poly-Si systems and the average European electricity mix. Results clearly show an overall very promising picture for thin film technologies, which are found to be characterised by favourable environmental impact indicators (with special reference to CdTe systems), in spite of their still comparatively lower efficiencies.


Cascaded DC-DC converter connection of photovoltaic modules [47]

Abstract

New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single dc-ac inverter connected to a series string of pv panels, or many small dc-ac inverters which connect one or two panels directly to the ac grid. This paper proposes an alternative topology of nonisolated per-panel dc-dc converters connected in series to create a high voltage string connected to a simplified dc-ac inverter. This offers the advantages of a "converter-per-panel" approach without the cost or efficiency penalties of individual dc-ac grid connected inverters. Buck, boost, buck-boost, and Cu´k converters are considered as possible dc-dc converters that can be cascaded. Matlab simulations are used to compare the efficiency of each topology as well as evaluating the benefits of increasing cost and complexity. The buck and then boost converters are shown to be the most efficient topologies for a given cost, with the buck best suited for long strings and the boost for short strings. While flexible in voltage ranges, buck-boost, and Cu´k converters are always at an efficiency or alternatively cost disadvantage.


Single-stage photovoltaic energy conversion system [48]

Abstract

For a photovoltaic (PV) array, the nonlinear output power relation of dP/dV against V and the near linear relation of dP/dV against I are discussed. Thus, using dP/dV as an index for current control is easier than for voltage control, allowing a simpler design. The current controller is employed in the PV energy conversion system to perform a rapid maximum power point tracking and to provide power to utilities with a unity power factor. As opposed to conventional two-stage designs, a single-stage PV energy conversion system is implemented, resulting in size and weight reduction, and increased efficiency. The proposed system performs a dual function; acting as a solar generator on sunny days and as an active power filter on rainy days. Computer simulations and experimental results demonstrate the superior performance of the proposed technique.


A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications [49]

Abstract

This paper presents a fuzzy-logic-controlled single-stage converter (SSC) for photovoltaic (PV)-powered lighting system applications. The SSC is the integration of a bidirectional buck–boost charger/discharger and a class-D series resonant parallel loaded inverter. The designed fuzzy logic controller (FLC) can control both the charging and discharging current, and can improve its dynamic and steady-state perfor- mance. Furthermore, a maximum power point tracker (MPPT) based on a perturb-and-observe method is also realized to effectively draw power from PV arrays. Both the FLC and the MPPT are implemented on a single-chip microprocessor. Simulated and experimental results obtained from the proposed circuit with an FLC have verified the adaptivity, robustness, and feasibility.


Low cost DC to AC converter for photovoltaic power conversion in residential applications [50]

Abstract

The development and experimental results of a low-cost 500-W DC-AC power converter for photovoltaic power conversion in residential applications are described. The converter uses low-cost technology usually applied in consumer products. The DC-AC converter is specially designed for operation at a wide DC input voltage range (30-170 V) in order to allow optimal power conversion with an arbitrary number of series connected solar arrays. A step-up chopper is used for MPP tracking and provides a constant 200-V DC link for the following push-pull power converter. This galvanic isolating power converter operates at 100 kHz and controls the current in the mains sinusoidally. A thyristor bridge alternates the current after each half line period. The required auxiliary power is kept below 7 W and is taken from the choke of the step-up chopper

REFERENCES

  1. Kreiger, M. A., M. L. Mulder, A. G. Glover, and J. M. Pearce. "Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament." Journal of Cleaner Production 70 (2014): 90-96.
  2. Kreiger, M., G. C. Anzalone, M. L. Mulder, A. Glover, and J. M. Pearce. "Distributed recycling of post-consumer plastic waste in rural areas." In MRS Proceedings, vol. 1492, pp. 91-96. Cambridge University Press, 2013.
  3. King, D., Babasola, A., Rozario, J., & Pearce, J. (2014). "Mobile Open-Source Solar-Powered 3-D Printers for Distributed Manufacturing in Off-Grid Communities." Challenges In Sustainability, 2(1), 18-27. doi:10.12924/cis2014.02010018
  4. Ben Wittbrodt, John Laureto, Brennan Tymrak, Joshua M Pearce "Distributed manufacturing with 3-D printing: a case study of recreational vehicle solar photovoltaic mounting systems" ,Journal of Frugal Innovation 1.1 (2015)
  5. Hunt, E. J., Zhang, C., Anzalone, N., & Pearce, J. M. (2015). "Polymer recycling codes for distributed manufacturing with 3-D printers". Resources, Conservation and Recycling, 97, 24-30.
  6. C. Baechler, M. DeVuono, and J. M. Pearce, " Distributed recycling of waste polymer into RepRap feedstock" Rapid Prototyping Journal, vol. 19, no. 2, pp. 118–125, Mar. 2013.
  7. Feeley, S. R., Bas Wijnen, and Joshua M. Pearce. "Evaluation of Potential Fair Trade Standards for an Ethical 3-D Printing Filament." Journal of Sustainable Development 7.5 (2014): p1.
  8. Knips, Charlotte, Jürgen Bertling, Jan Blömer, and Willm Janssen. "FabLabs, 3D-printing and degrowth–Democratisation and deceleration of production or a new consumptive boom producing more waste?." (2014).
  9. Wittbrodt, B. T., et al. "Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers." Mechatronics 23.6 (2013): 713-726.
  10. Meyer, Valerie B. "Prototyping the Environmental Impacts of 3D Printing: Claims and Realities of Additive Manufacturing." (2015).
  11. Pearce, Joshua M. "Applications of Open Source 3-D Printing on Small Farms." Organic Farming 1.1 (2015): 19-35.
  12. Kreiger, Megan, and Joshua M. Pearce. "Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products." ACS Sustainable Chemistry & Engineering 1.12 (2013): 1511-1519.
  13. Wittbrodt, Ben, and Joshua M. Pearce. "The effects of PLA color on material properties of 3-D printed components." Additive Manufacturing 8 (2015): 110-116.
  14. Gwamuri, Jephias, et al. "High-Efficiency Solar-Powered 3-D Printers for Sustainable Development." Machines 4.1 (2016): 3.
  15. Pearce, Joshua M. "A novel approach to obviousness: An algorithm for identifying prior art concerning 3-D printing materials." World Patent Information 42 (2015): 13-18.
  16. Pearce, Joshua M. "The case for open source appropriate technology." Environment, Development and Sustainability 14.3 (2012): 425-431.
  17. Laplume, Andre, Gerald C. Anzalone, and Joshua M. Pearce. "Open-source, self-replicating 3-D printer factory for small-business manufacturing." The International Journal of Advanced Manufacturing Technology (2015): 1-10.
  18. J. H. R. Enslin and D. B. Snyman IEEE Transactions on Power Electronics, vol. 6, no. 1, pp. 73–82, Jan. 1991.
  19. A. J. Buitenhuis and J. M. Pearce Open-source development of solar photovoltaic technology vol. 16, no. 3, pp. 379–388, Sep. 2012.
  20. M. R. Nouni, S. C. Mullick, and T. C. Kandpal Photovoltaic projects for decentralized power supply in India: A financial evaluation Energy Policy, vol. 34, no. 18, pp. 3727–3738, Dec. 2006.
  21. Mehmet Emin Meral,Furkan Dinçer A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems Renewable and Sustainable Energy Reviews Volume 15, Issue 5, June 2011, Pages 2176–2184
  22. K. Knapp,T. Jester Empirical investigation of the energy payback time for photovoltaic modules Solar Energy Volume 71, Issue 3, 2001, Pages 165–172
  23. A. Stoppato Life cycle assessment of photovoltaic electricity generation Energy Volume 33, Issue 2, February 2008, Pages 224–232 19th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impactof Energy Systems — ECOS 2006
  24. Tim Jacksona,Mark Oliver The viability of solar photovoltaics Energy Policy Volume 28, Issue 14, November 2000, Pages 983–988
  25. Pearce, Joshua M. "Industrial symbiosis of very large-scale photovoltaic manufacturing." Renewable Energy 33, no. 5 (2008): 1101-1108.
  26. Fthenakis, Vasilis M., Hyung Chul Kim, and Erik Alsema. "Emissions from photovoltaic life cycles." Environmental science & technology 42, no. 6 (2008): 2168-2174.
  27. Kelly, Nelson A., and Thomas L. Gibson. "Improved photovoltaic energy output for cloudy conditions with a solar tracking system." Solar Energy 83, no. 11 (2009): 2092-2102.
  28. Parida, Bhubaneswari, S_ Iniyan, and Ranko Goic. "A review of solar photovoltaic technologies." Renewable and sustainable energy reviews 15, no. 3 (2011): 1625-1636.
  29. Razykov, T. M., C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, and H. M. Upadhyaya. "Solar photovoltaic electricity: current status and future prospects." Solar Energy 85, no. 8 (2011): 1580-1608.
  30. Kelly, Nelson A., and Thomas L. Gibson. "Increasing the solar photovoltaic energy capture on sunny and cloudy days." Solar Energy 85, no. 1 (2011): 111-125.
  31. Branker, Kadra, M. J. M. Pathak, and Joshua M. Pearce. "A review of solar photovoltaic levelized cost of electricity." Renewable and Sustainable Energy Reviews 15, no. 9 (2011): 4470-4482.
  32. Kazmerski, Lawrence L. "Photovoltaics: a review of cell and module technologies." Renewable and sustainable energy reviews 1, no. 1 (1997): 71-170.
  33. Kato, Kazuhiko, Akinobu Murata, and Koichi Sakuta. "An evaluation on the life cycle of photovoltaic energy system considering production energy of off-grade silicon." Solar Energy Materials and Solar Cells 47, no. 1 (1997): 95-100.
  34. Staebler, David L., Natko B. Urli, and Zoltan J. Kiss. "Development of high efficiency hybrid PV-thermal modules." In Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, pp. 1660-1663. IEEE, 2002.
  35. Tselepis, S., and Y. Tripanagnostopoulos. "Economic analysis of hybrid photovoltaic/thermal solar systems and comparison with standard PV modules." In Proceedings of the international conference PV in Europe, pp. 7-11. 2002.
  36. Green, M. A. "Recent developments in photovoltaics." Solar energy 76, no. 1 (2004): 3-8.
  37. Zdanowicz, T., T. Rodziewicz, and M. Zabkowska-Waclawek. "Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations." Solar Energy Materials and Solar Cells 87, no. 1 (2005): 757-769.
  38. Alsema, E. A., and M. J. de Wild-Scholten. "The real environmental impacts of crystalline silicon PV modules: an analysis based on up-to-date manufacturers data." In Presented at the 20th European Photovoltaic Solar Energy Conference, vol. 6, p. 10. 2005.
  39. Alsema, E. A., and M. J. de Wild-Schoten. "Reduction of the environmental impacts in crystalline silicon module manufacturing." In 22nd European Photovoltaic Solar Energy Conference, pp. 829-836. WIP-Renewable Energies, 2007.
  40. Koroneos, Christopher, and Nikolaos Stylos. "Exergetic life cycle assessment of a grid-connected, polycrystalline silicon photovoltaic system." The International Journal of Life Cycle Assessment 19, no. 10 (2014): 1716-1732.
  41. Design optimization of photovoltaic powered water pumping systems A. A. Ghoneim, “ Energy Conversion and Management, vol. 47, no. 11–12, pp. 1449–1463, Jul. 2006.
  42. Gwamuri, Jephias, Ben T. Wittbrodt, Nick C. Anzalone, and Joshua M. Pearce. "Reversing the Trend of Large Scale and Centralization in Manufacturing: The Case of Distributed Manufacturing of Customizable 3-D-Printable Self-Adjustable Glasses." Challenges in Sustainability 2, no. 1 (2014): 30-40.
  43. Meyer, Valerie B. "Prototyping the Environmental Impacts of 3D Printing: Claims and Realities of Additive Manufacturing." (2015).
  44. Reliability Issues in Photovoltaic Power Processing Systems G. Petrone, G. Spagnuolo, R. Teodorescu, M. Veerachary, and M. Vitelli, “ IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2569–2580, Jul. 2008.
  45. A case study of solar photovoltaic power system at Sagardeep Island, India R. M. Moharil and P. S. Kulkarni, Renewable and Sustainable Energy Reviews, vol. 13, no. 3, pp. 673–681, Apr. 2009.
  46. Raugei, Marco, Silvia Bargigli, and Sergio Ulgiati. "Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si." Energy 32, no. 8 (2007): 1310-1318.
  47. Cascaded DC-DC converter connection of photovoltaic modules G. R. Walker and P. C. Sernia, “ IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 1130–1139, Jul. 2004.
  48. Single-stage photovoltaic energy conversion system T.-J. Liang, Y. C. Kuo, and J.-F. Chen, “ Electric Power Applications, IEE Proceedings -, vol. 148, no. 4, pp. 339–344, Jul. 2001.
  49. A Fuzzy-Logic-Controlled Single-Stage Converter for PV-Powered Lighting System Applications T.-F. Wu, C.-H. Chang, and Y.-K. Chen IEEE Transactions on Industrial Electronics, vol. 47, no. 2, pp. 287–296, Apr. 2000.
  50. Low cost DC to AC converter for photovoltaic power conversion in residential applications U. Herrmann, H. G. Langer, and H. Van der Broeck, “ in , 24th Annual IEEE Power Electronics Specialists Conference, 1993. PESC ’93 Record, 1993, pp. 588–594.
Cookies help us deliver our services. By using our services, you agree to our use of cookies.