Warning! You are not logged in. Log in or create an account to have your edits attributed to your username rather than your IP, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 11: Line 11:
== [http://www.sciencedirect.com/science/article/pii/S0038092X12002137 The effect of hybrid photovoltaic thermal device operating conditions on intrinsic layer thickness optimization of hydrogenated amorphous silicon solar cells<ref name="Pathak">M. J. M. Pathak, K. Girotra, S. J. Harrison, and J. M. Pearce, "The effect of hybrid photovoltaic thermal device operating conditions on intrinsic layer thickness optimization of hydrogenated amorphous silicon solar cells," Solar Energy, vol. 86, no. 9, pp. 2673–2677, Sep. 2012.</ref>] ==
== [http://www.sciencedirect.com/science/article/pii/S0038092X12002137 The effect of hybrid photovoltaic thermal device operating conditions on intrinsic layer thickness optimization of hydrogenated amorphous silicon solar cells<ref name="Pathak">M. J. M. Pathak, K. Girotra, S. J. Harrison, and J. M. Pearce, "The effect of hybrid photovoltaic thermal device operating conditions on intrinsic layer thickness optimization of hydrogenated amorphous silicon solar cells," Solar Energy, vol. 86, no. 9, pp. 2673–2677, Sep. 2012.</ref>] ==


'''Abstract''': Historically, the design of hybrid solar photovoltaic thermal (PVT) systems has focused on cooling crystalline silicon (c-Si)-based photovoltaic (PV) devices to avoid temperature-related losses. This approach neglects the associated performance losses in the thermal system and leads to a decrease in the overall exergy of the system. Consequently, this paper explores the use of hydrogenated amorphous silicon (a-Si:H) as an absorber material for PVT in an effort to maintain higher and more favorable operating temperatures for the thermal system. Amorphous silicon not only has a smaller temperature coefficient than c-Si, but also can display improved PV performance over extended periods of higher temperatures by annealing out defect states from the Staebler–Wronski effect. In order to determine the potential improvements in a-Si:H PV performance associated with increased thicknesses of the i-layers made possible by higher operating temperatures, a-Si:H PV cells were tested under 1 sun illumination (AM1.5) at temperatures of 25 <sup>o</sup>C (STC), 50 <sup>o</sup>C (representative PV operating conditions), and 90 <sup>o</sup>C (representative PVT operating conditions). PV cells with an i-layer thicknesses of 420, 630 and 840 nm were evaluated at each temperature. Results show that operating a-Si:H-based PV at 90 <sup>o</sup>C, with thicker i-layers than the cells currently used in commercial production, provided a greater power output compared to the thinner cells operating at either PV or PVT operating temperatures. These results indicate that incorporating a-Si:H as the absorber material in a PVT system can improve the thermal performance, while simultaneously improving the electrical performance of a-Si:H-based PV.
'''Abstract''': Historically, the design of hybrid solar photovoltaic thermal (PVT) systems has focused on cooling crystalline silicon (c-Si)-based photovoltaic (PV) devices to avoid temperature-related losses. This approach neglects the associated performance losses in the thermal system and leads to a decrease in the overall exergy of the system. Consequently, this paper explores the use of hydrogenated amorphous silicon (a-Si:H) as an absorber material for PVT in an effort to maintain higher and more favorable operating temperatures for the thermal system. Amorphous silicon not only has a smaller temperature coefficient than c-Si, but also can display improved PV performance over extended periods of higher temperatures by annealing out defect states from the Staebler–Wronski effect. In order to determine the potential improvements in a-Si:H PV performance associated with increased thicknesses of the i-layers made possible by higher operating temperatures, a-Si:H PV cells were tested under 1 sun illumination (AM1.5) at temperatures of 25 �C (STC), 50 �C (representative PV operating conditions), and 90 �C (representative PVT operating conditions). PV cells with an i-layer thicknesses of 420, 630 and 840 nm were evaluated at each temperature. Results show that operating a-Si:H-based PV at 90 �C, with thicker i-layers than the cells currently used in commercial production, provided a greater power output compared to the thinner cells operating at either PV or PVT operating temperatures. These results indicate that incorporating a-Si:H as the absorber material in a PVT system can improve the thermal performance, while simultaneously improving the electrical performance of a-Si:H-based PV.


* Amorphous silicon has a smaller temperature coefficient (.1%/oC) than c-Si (.4%/oC) and can display improved PV performance over extended periods of higher temperatures by annealing out defect states from the Staebler–Wronski effect
* Amorphous silicon has a smaller temperature coefficient (.1%/oC) than c-Si (.4%/oC) and can display improved PV performance over extended periods of higher temperatures by annealing out defect states from the Staebler–Wronski effect
Warning! All contributions to Appropedia are released under the CC-BY-SA-4.0 license unless otherwise noted (see Appropedia:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here! You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted material without permission!
Cancel Editing help (opens in new window)
Cookies help us deliver our services. By using our services, you agree to our use of cookies.