Line 4: Line 4:
== SEARCH LIST ==
== SEARCH LIST ==


== Google Scholor ==
* PV LED Lighting.
*
----


== CITATION LIST ==
== CITATION LIST ==

Revision as of 19:38, 11 February 2019


SEARCH LIST

CITATION LIST

1. Prediction of Energy Effects on Photovoltaic Systems due to Snowfall Events

Andrews, Rob W., and Joshua M. Pearce. “Prediction of Energy Effects on Photovoltaic Systems Due to Snowfall Events.” 2012 38th IEEE Photovoltaic Specialists Conference, 2012. doi:10.1109/PVSC.2012.6318297. [1]

  • Modules of C-Si installed at different angles in an Open Source Outdoors Test Field (OSOTF) and snowfall data is collected from Kingston climate weather station for the winters of 2010/2011 and 2011/2012.
  • Data from two other solar firms SF1 and SF2 collected hourly: DC power input to each inverter, Solar irradiation and module temperature measurements.
  • Assumption: Upon performing a sensitivity analysis using the RMSE of the model, relative humidity and wind speed were considered not significant and the magnitude of energy gain or loss from snowfall is proportional to the mean solar irradiation in a given day.
  • A comparison of the derived model coefficients from the three sources used. In order to test the applicability of this approach, the snow losses for SF2 were determined using the coefficients derived from SF1 and the OSOTF.
  • Predictions can be made by integrating data from a geographically dissimilar system of a similar configuration by using this proposed method.

2. The Effects of Snowfall on Solar Photovoltaic Performance

Andrews, Rob W., Andrew Pollard, and Joshua M. Pearce. “The Effects of Snowfall on Solar Photovoltaic Performance.” Solar Energy 92 (2013): 84–97. doi:10.1016/J.SOLENER.2013.02.014. [2]

  • Snowfall accumulation is affected by ambient temperature (above and below -3◦C), wind speeds, inclination from the horizontal, and surface properties.
  • Giddings and LaChappelle and Bouger-Lambert law infers that approximately 20% of incident radiation will be available at 2cm snow depth, and 3-4% is available at 10cm depth.
  • Transmitted light from snow layer is short-wave radiation causes shedding phenomenon of snow due to its insulation properties same as a fiber glass, thus retain heat and form water later leading to snow slide.
  • Energy influx to a snow-covered module can occur in three ways:
   1. Diffusion of short wave radiation through the snow pack,
   2. Albedo reflection to the exposed rear of the module,
   3. Conduction from other parts of the PV array that are not covered with snow.
  • 70 modules of amorphous silicon and crystalline silicon at arranged at 5◦, 10◦, 15◦, 20◦, 40◦, and 60◦ are monitored for short-circuit current and back temperature.
  • change in the short circuit current will have a proportional change on the power output of a module, as it represents the level of light reaching the modules, making it an appropriate performance metric, while effectively isolating against the effects of temperature on the results.
  • Yearly snow effect is defined as the summation of the difference between the actual and synthetic output.
  • Albedo effect increases with module inclination angle,which is due to the increased view factor from the module to the snow surface
  • Lower temperature and higher relative humidity will tend to increase the time to shed.

3. Photovoltaics and snow: An update from two winters of measurements in the SIERRA

Tim Townsend, BEW Engineering, San Ramon, CA, U.S.A. and Loren Powers, BEW Engineering, San Ramon, CA, U.S.A. 19 April 2012 [3]

  • Three pairs of photovoltaic (PV) modules at fixed south-facing tilt angles of 0°, 24° and 39° were installed in Truckee, CA (near Lake Tahoe) at the beginning of the 2009–10 winter. And it receives 200 inches per year (5 m) of snow. Three are manually cleaned and heated thermostatically while other three are bordered and allowed to shed naturally.
  • Snow losses are gauged as the difference in monthly amp-hours between the clean and uncleaned modules
  • In 2009-10, wintertime energy losses of 40–60% and annual energy losses from 12–18% were noted at normal snow fall.
  • Model Development equation accounts for ground interference, air temperature, plane of array insolation and relative humidity.
  • In addition to the BEW coefficients and site latitude, the only data needed to run the model are: Monthly snowfall, Number of snow events per month, Average air temperature, Plane of array insolation, Average relative humidity. The monthly loss estimates in the table given can be used directly as inputs to popular PV simulation programs such as PVSyst.

4. Orientation and Tilt Dependence of a Fixed PV Array Energy Yield Based on Measurements of Solar Energy and Ground Albedo – a Case Study of Slovenia By Jože Rakovec, Klemen Zakšek, Kristijan Brecl, Damijana Kastelec and Marko Topic, Submitted: October 27th 2010Reviewed: April 6th 2011Published: August 1st 2011 DOI: 10.5772/18386 [4]

  • Considering only direct solar irradiation, the optimal tilt angle during the year can be calculated as φ - δs, where δs is the declination of the Sun.
  • Joule losses in wirings of PV modules into PV arrays and inverter losses account to losses in output power of PV system.
  • Long-term measured meteorological values should be used to obtain reliable results on PV yield
  • Measured irradiation values are the most important parameter in photovoltaics,
  • The albedo changes significant during winters only as the ground covered by snow is often even brighter than the sky.

5. PV system monitoring and performance of a grid connected PV power station located in Manchester-UK E. M. Natsheh, E. J. Blackhurs, A. Albarbar, Manchester Metropolitan University, School of Enginerring, Manchester M1 5GD, UK, ate of Conference: 6-8 Sept. 2011 Date Added to IEEE Xplore: 23 January 2012, Electronic ISBN: 978-1-84919-536-2, INSPEC Accession Number: 12328415, DOI: 10.1049/cp.2011.0121. [5]

  • The developed monitoring system enables system degradation to be identified via the calculation of the residual difference in power generation between the computer model and the actual PV power plant. and irradiance, temperature and system output power are gathered from a 28.8kW grid connected solar power system.
  • Mathematical model consists of a photo current, diode, series resistor and a parallel resistor.
  • The photocurrent is directly proportional to the light falling on the cell. During darkness, the solar cell is not active; it works as a diode. It produces either voltage or current.
  • The major inputs for the proposed PV model were solar irradiation, PV panel temperature and PV manufactures data sheet information. In this study, the Astronergy HSM6610P225 PV module is taken as example.
  • With increased solar irradiance there is an increase in maximum power output and short circuit current.
  • with an increase in the cell temperature, maximum power output decreases whilst the short circuit current increases.

6. Grid-connected versus stand-alone energy systems for decentralized power—A review of literature Deepak Paramashivan, Kaundinya P. Balachandra, N. H. Ravindranath, Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560012, India Received 30 September 2008, Revised 13 January 2009, Accepted 12 February 2009, Available online 6 March 2009. [6]

  • Explains the differences between Grid connected (GC) and stand alone (SA) energy systems
  • Technological feasibility of GC and SA.
  • Environmental and economic feasibility of GC and SA.
  • Designing of GC and SA system.
  • Policy measures and barriers for implementation of GC and SA energy systems

7. Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica TinaTin Antarctic and Southern Ocean Coalition, BP 80358, 45163 Olivet, CEDEX 3, France, Benjamin K.Sovacool, National University of Singapore, Singapore, David Blake British Antarctic Survey, United Kingdom, Peter Magill, Australian Antarctic Division, Australia, Saad, Alfred Wegener Institute, Germany NaggareSvenLidstrom, Swedish Polar Research Secretariat, Sweden, Kenji Ishizawag National Institute of Polar Research, Japan. Johan Berte, International Polar Foundation, Belgium. Received 20 July 2009, Accepted 14 October 2009, Available online 3 November 2009. [7]

  • Solar energy and combined systems : In most cases, solar power is combined with wind turbines and diesel generators to meet energy needs in Antarctica.
  • Field camps and instrumentation: Power systems based upon solar panels and sometimes small wind turbines allow instruments to collect data continuously and to connect to satellites for remote access and data transfer
  • Applications: Four 35 W solar panels and a 12 V battery provide the power for a weighbridge that weighs each penguin as it leaves its colony.
  • Costs and benefits of analysis for setting up renewable energy sources in Antarctica.

8. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems PaulDenholm, National Renewable Energy Laboratory, 901 D Street, S.W., Suite 930, Washington, DC 20024, USA Energy Policy, Robert M.Margolis, National Renwable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA Volume 35, Issue 5, May 2007, Pages 2852-2861, Received 20 June 2006, Accepted 3 October 2006, Available online 27 November 2006 [8]

  • Impact of PV on Electric power system.
  • Flexibility of power systems on the basis resources.
  • Dealing with surplus or excess PV output.
  • PV capacity factors as a function of PV penetration

9. Realistic generation cost of solar photovoltaic electricity Parm Pal Singh and Sukhmeet Singh, School of Energy Studies for Agriculture, Punjab Agricultural University, Ludhiana, Punjab – 141004, India, Renewable Energy Volume 35, Issue 3, March 2010, Pages 563-569, Received 2 March 2009, Accepted 26 July 2009, Available online 1 September 2009. [9]

  • Specific Initial Investment: A term called “specific initial investment (Cs)” has been defined as the ratio of price of SPV system per unit rated capacity (Pr) to specific electric output (Es) at a given place
  • Payment and loan methods and suggestions.

10. The Market Value and Cost of Solar Photovoltaic Electricity Production Borenstein, S. (2008). The Market Value and Cost of Solar Photovoltaic Electricity Production. UC Berkeley: Center for the Study of Energy Markets. Retrieved from https://escholarship.org/uc/item/3ws6r3j4 [10]

  • Valuing time and varying solar PV power analysis
  • Pricing of Solar PV energy
  • Significance of user location in Pricing.

11. Grid parity and self-consumption with photovoltaic systems under the present regulatory framework in Spain: The case of the University of Jaén Campus D.L.Talavera, J.de la Casa, E. Muñoz-Cerón, G.Almonacid, IDEA Research Group (Investigación y Desarrollo de Energía Solar), University of Jaén Campus las Lagunillas s/n, 23071 Jaén, Spain, Renewable and Sustainable Energy Reviews Volume 33, May 2014, Pages 752-771 [11]

  • Consumption and demand of University
  • Estimation of required energy
  • losses and generation comparision study
  • Profitability

12. Economical Design of Utility-Scale Photovoltaic Power Plants With Optimum Availability Zahra Moradi-Shahrbabak, Student Member, IEEE, Ahmadreza Tabesh, Member, IEEE, and Gholam Reza Yousefi, Member, IEEE. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 7, JULY 2014 [12]

  • Basic topological designing
  • Availability estimation of PV
  • Economic design of PV and inverters at optimum availability

13. Study of a Standalone Wind and Solar PV Power Systems Shafiqur Rehman, Center of Engineering Research, Research Institute and Ibrahim M. El-Amin Electrical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran-31261, Saudi Arabia. 2010 IEEE International Energy Conference [13]

  • Estimations based for stand alone 6kW wind and 6kW solar photovoltaic power systems.
  • Study of seasonal and annual summary of climatic changes and their influence.
  • Yield estimation saperately for wind energy and solar energy.

14. Performance Enhancement of PV Solar System by Mirror Reflection Rizwanur Rahman, and Md. Fayyaz Khan Department of EEE, United International University, Dhaka, Bangladesh. 6th International Conference on Electrical and Computer Engineering ICECE 2010, 18-20 December 2010. [14]

  • Methods for improving performance of PV
  • Setup of Mirrors and their angles

15. PRODUCT-INTEGRATED PV APPLICATIONS - HOW INDUSTRIAL DESIGN METHODS YIELD INNOVATIVE PV POWERED PRODUCTS, Dr. A.H.M.E. Reinders . . Department of Design, Production and Management, Faculty of Engineering Technology Universlty of Twente, P.O:Box 217, NL-7500 AE Enschede, The Netherlands. [15]

  • Various Industrial design methods
  • Illustration with examples.

16. A review of solar photovoltaic technologies Bhubaneswari Parida and , S.Iniyan, Institute for Energy Studies, Department of Mechanical Engineering, Anna University Chennai, Chennai 600025, India and Ranko Goic , Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture University of Split, Croatia. Renewable and Sustainable Energy Reviews Volume 15, Issue 3, April 2011, Pages 1625-1636 [16]

  • PV absorbing materials
  • Performance and efficiency
  • Sizing, distribution and control
  • Applications and limitations

17. Photovoltaic materials, past, present, future Adolf Goetzberger, Christopher Hebling, Fraunhofer Institute for Solar Energy Systems, Oltmannsstrasse 5, D-79100 Freiburg, Germany Solar Energy Materials and Solar Cells Volume 62, Issues 1–2, 15 April 2000, Pages 1-19 [17]

  • thin Film technology

18. A Low Cost Method of Snow Detection on Solar Panels and Sending Alerts Seyedali Meghdadi, Electrical Engineering Faculty, Memorial University of Newfoundland, NL,and Tariq Iqbal, Faculty of Engineering and Applied Science, Memorial University of Newfoundland Canada, Journal of Clean Energy Technologies, Vol. 3, No. 5, September 2015.

  • Arduino Uno software for design and modelling the circuit.
  • Algorithm and system overview

19. MODELING THE SOLAR IRRADIATION ON FLAT PLATE COLLECTORS AUGMENTED WITH PLANAR REFLECTORS JOSEPH W. BOLLENTIN and RICHARD D. WILK, Department of Mechanical Engineering, Union College, Steinmetz Hall, Schenectady, NY 12308-231 l, U.S.A. Solar Energy Vol. 55, No. 5, pp. 343 354, 1995, Copyright © 1995 Elsevier Science Ltd, Printed in the U.S.A. [18]

  • Projection of system into the north-south plane for determining width ratios to evaluate reflected irradiation or shading.
  • Projection of system into the horizontal plane for determining the area of collector receiving reflected radiation or the area of collector being shaded by the reflector
  • Sky and ground reflected diffuse.

20. Optimization of operational and design parameters of plane reflector-tilted flat plate solar collector systems H.M.S.Hussein, G.E.Ahmad M.A. Mohamad Solar Energy Department, National Research Centre, El-Tahrir Street, Dokki, Giza, Egypt. Energy Volume 25, Issue 6, June 2000, Pages 529-542 [19]

  • The area of the tilted collector illuminated by reflected beams from the reflector depends on the reflector-collector system geometry and Sun position.
  • Various reflector-collector system and their collector at its optimum tilt angle.
  • The South facing reflector provides higher yearly solar energy collection than the North facing one.

21. The enhancement of energy gain of solar collectors and photovoltaic panels by the reflection of solar beams M.D.JPucar and A.RDespic, Institute of Architecture and Urban Planning of Serbia, Bul. revolucije 73/II, 11 000 Beograd, Yugoslavia Institute of Technical Science of the Serbian Academy of Science and Arts, Knez Mihailova 35, 11 000 Beograd, Yugoslavia. Energy Volume 27, Issue 3, March 2002, Pages 205-223 [20]

  • different types of collectors/photovoltaic panels using reflection of sunbeams.
  • Irradiance and energy gain by PV panels.
  • Inclination of the receiving surface led per se to increased irradiance and energy gain compared to the situation where the receiving surface was horizontal.

22. Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector B.J.Huang, F.S. Sun, Department of Mechanical Engineering, National Taiwan University, Taipei 106, Taiwan, ROC Energy Conversion and Management Volume 48, Issue 4, April 2007, Pages 1273-1280. [21]

  • Design: The conventional one axis sun tracking system requires continuous tracking using feedback or open loop control
  • There are three touch switches mounted on the transmission gear of the frame for signal outputting to the control circuit and thus determines the stopping angle.
  • The circuit will detect the signal as well as the relative sun position and actuate the motor to move to the next position, which faces the sun more closely.
  • Analysis of total solar radiation incident upon the PV at various design parameters and PV tilt angles.

23. Solar thermal collector augmented by flat plate booster reflector: Optimum inclination of collector and reflector HiroshiTanaka, Department of Mechanical Engineering, Kurume National College of Technology, Komorino, Kurume, Fukuoka 830-8555, Japan, Applied Energy Volume 88, Issue 4, April 2011, Pages 1395-1404. [22]

  • Daily solar radiation increases with an increase in collector inclination in winter, and decreases with an increase in collector inclination in summer, since the solar altitude angle is high in summer and low in winter.

24. What are the barriers and incentives for community-owned means of energy production and use? Gordon Walker, Department of Geography, Lancaster Environment Centre, Lancaster University, Farrer Avenue, Lancaster LA1 4YQ, UK Energy Policy Volume 36, Issue 12, December 2008, Pages 4401-4405 [23]

  • Different legal and financial models of ownership : Cooperatives, Community charities, Development trusts and Shares owned by a local community organisation.
  • Incentives for community ownership: Local income and regeneration (through sales of energy), Local approval and planning permission, Local control, Lower energy costs and reliable supply, Ethical and environmental commitment and Load management.
  • Barriers: legal conditions, economic and technical viability, liaison, long return periods leading to subsidized funding, lack of expertise to manage income-generating potential,
  • Future Prospects on present barriers and incentives.

25. The transformation of southern California's residential photovoltaics market through third-party ownership Easan Drury, Mackay Miller, Donna Heimiller, and Thomas D. Perry IV , Strategic Energy Analysis Center, National Renewable Energy Laboratory, 1617 Cole Blvd, RSF 300, Golden, CO 80401, USA Charles M. Macal, Diane J. Graziano, and Jonathan Ozik, Center for Complex Adaptive Agent Systems Simulation, Argonne National Laboratory, Argonne, IL 60439, USA Energy Policy Volume 42, March 2012, Pages 681-690 [24]

  • Residential PV adoption, population demographics, and voting and methodology used for statistical analysis
  • evolution of California PV markets and PV related policy
  • PV adoption trends: customer owned PV adoption and third-party owned PV adoption
  • policy implications: decreasing PV prices in addition to the reduction or removal of several adoption barriers through the introduction of third-party PV products
encouraged other communities to own PV technology.
  • Third-party PV products are increasing total PV market demand by reaching new customers.

26. Light-to-Light: PV-Fed LED Lighting Systems Nicola Femia and Mario Fortunato, Dipartimento di Ingegneria Elettronica e Ingegneria Informatica, University of Salerno, Salerno, Italy, Massimo Vitelli, Dipartimento di Ingegneria Industriale e dell'Informazione, Seconda Università di Napoli, Aversa (CE), Italy IEEE Transactions on Power Electronics ( Volume: 28 , Issue: 8 , Aug. 2013 , DOI: 10.1109/http://www.example.com link titleho#full-text-header]

Cookies help us deliver our services. By using our services, you agree to our use of cookies.