Open Source Hydrocyclone Literature Review

Background

This page is dedicated to the literature review of an Open Source Hydrocyclone.

Literature

Google scholar search: Hydrocyclone Design

Designing automated computational fluid dynamics modelling tools for hydrocyclone design

T. J. Olson and R. Van Ommen, “Optimizing hydrocyclone design using advanced CFD model,” Minerals Engineering, vol. 17, no. 5, pp. 713–720, May 2004, doi: 10.1016/j.mineng.2003.12.008.

Abstract: Resolution of the complex multiphase swirling flow field in a hydrocyclone using computational fluid modelling techniques is not a trivial task. CFD Modelling technology is not perfect and it is certainly still possible to improve our understanding of the fundamentals and the models needed to describe them. Nevertheless, computational modelling techniques are being used to compare and understand the workings of different hydrocyclone designs and modes of operation.

Until now, CFD has been the realm of the research analyst more than the plant or design engineer. The development of in house CFD expertise may be seen as prohibitive in terms of time and cost. These two factors have presented a barrier to the use of CFD by the hydrocyclone industry, in spite of improvements in modelling capability.

This paper describes how automated CFD tools have been developed based on documented best practices. The bespoke tool development described will enable a non-CFD analyst to carryout hydrocyclone simulations. The paper will also consider the advantages and limitations of different computational fluid dynamic techniques applicable to hydrocyclone modelling.

Notes:

  • Using CFD to optimize hydrocyclone design based on application. This allows for customized cyclones that are specific to the application.
  • For CFD analysis by using tetrahedral meshing around the inlet will provide a closer fitting mesh.
  • A CFD analysis of a particular design will help identify the fluid flow within the cyclone.
  • CFD allows for multiple design iterations without having to manufacture any prototypes.

A simple procedure for design and performance prediction of Bradley and Rietema hydrocyclones

L. R. Castilho and R. A. Medronho, “A simple procedure for design and performance prediction of Bradley and Rietema hydrocyclones,” Minerals Engineering, vol. 13, no. 2, pp. 183–191, Feb. 2000, doi: 10.1016/S0892-6875(99)00164-8.

Abstract Hydrocyclones were originally designed to promote solid-liquid separations but nowadays they are also used for solid-solid, liquid-liquid and gas-liquid separations. Although a hydrocyclone is a very simple equipment to build, the use of custom-made cyclones is not widely used. This is probably due to the lack of a simple procedure for hydrocyclone design. In the present work a procedure is presented, which allows the design and performance prediction of hydrocyclones that follow Bradley and Rietema recommended geometries, that are the only two well-known families of geometrically similar hydrocyclones. The procedure proposed here resulted in little error, when the results were compared with experimental data. Additionally, a comparison of both families of hydrocyclones revealed that, for a given hydrocyclone diameter and at the same operational conditions, Bradley hydrocyclones provide higher efficiencies, while Rietema hydrocyclones give higher capacities.

Notes:

  • Design of a hydrocyclone is made up of non-moving parts.

-The cylindrical top section with a tangential inlet connected bellow is a conical part that has a circular opening at the bottom. Top of the cyclone is closed off with a hole in the middle that has a pipe extruded downward from the top that is the vortex finder.

  • Paper provides relevant equations used in hydrocyclone design.
  • Bradley hydrocyclones = higher efficiencies while Rietema hydrocyclones = higher capacities

Optimising small hydrocyclone design using 3D printing and CFD simulations

D. Vega-Garcia, P. R. Brito-Parada, and J. J. Cilliers, “Optimising small hydrocyclone design using 3D printing and CFD simulations,” Chemical Engineering Journal, vol. 350, pp. 653–659, Oct. 2018, doi: 10.1016/j.cej.2018.06.016.

Abstract The use of small hydrocyclones for the separation of particles in the micron range is of growing interest. However, these hydrocyclones are typically limited to conventional shapes or restricted to specific outlet sizes, which can lead to sub-optimal performance. The aim of this study is to present a method for the optimisation of small hydrocyclone design. This method consists of four steps that combine designing, Computational Fluid Dynamics (CFD) simulations, 3D printing and experimental testing. A 3D printed 10 mm hydrocyclone was shown first to match the performance of a ceramic equivalent, followed by factorial experiments with a set of printed hydrocyclones of different spigot and vortex finder diameters. A CFD model for small hydrocyclones was implemented and, following validation with the experimental data, used to simulate small hydrocyclone designs with parabolic walls. The model predicted improved separation performance compared to the conventional conic wall designs. In a novel development, a 10 mm hydrocyclone with parabolic walls was 3D printed and the prediction confirmed experimentally. The solids recovery and concentration ratio were increased by 10 percentage points and 0.2, respectively, for a 0.5 g/L yeast suspension and at an equivalent pressure drop. The use of 3D printing to manufacture small hydrocyclones of various designs has been proven in this study to be practical and to allow rapid prototyping design informed by CFD simulations. This is a significant improvement in the cost, time and versatility associated to hydrocyclone design and can lead to enhanced separation performance. Notes:

  • Different inlet configurations affect the recovery of solids
  • Vortex finder shape effects recovery of solids and separation efficiency
 	Possibly explore other more complex geometries that are not easily manufactured using traditional manufacturing techniques
  • Limited testing on small hydrocyclones due to only having a small selection of commercially available hydrocyclones.
  • Traditional manufacturing methods of hydrocyclones limit customization and experimental designs. 3D printing can eliminate this boundary.
  • Parabolic walled design had a higher solids recovery rate.

Search method?:

Performance of Hydrocyclones with Different Geometries by Vieira, Silverio, Damasceno, and Barrozo

L. G. M. Vieira,* B. C. Silverio, J. J. R. Damasceno and M. A. S. Barrozo, "Performance of Hydrocyclones with Different Geometeries," Canadian Journal of Chemical Engineering, vol 89, pp. 655-662, Aug 2011.

Abstract Hydrocyclones belong to an important group of equipments designed to solid–liquid or liquid–liquid separation in a centrifugal field. It is possible to adapt a hydrocyclone to the accomplishment of several industrial activities depending on the geometrical relations among its main dimensions. The operation and design of these devices are relatively simple; however, the flow inside them is very complex and its prediction is very difficult. For that reason, most models that are used to predict hydrocyclone performance are empirical ones. The objective of this work was to study the influence of geometric variables in the performance of hydrocyclones, using CFD and response surface techniques. The obtained results show that it was possible to find an optimum hydrocyclone design, that is, geometric relationships that lead to Euler number and cut size in minimum levels.

Notes:

Cookies help us deliver our services. By using our services, you agree to our use of cookies.