Open Source Hydrocyclone Literature Review

Background

This page is dedicated to the literature review of an Open Source Hydrocyclone.

Literature

Google scholar search: Hydrocyclone Design

Designing automated computational fluid dynamics modelling tools for hydrocyclone design

T. J. Olson and R. Van Ommen, “Optimizing hydrocyclone design using advanced CFD model,” Minerals Engineering, vol. 17, no. 5, pp. 713–720, May 2004, doi: 10.1016/j.mineng.2003.12.008.

Abstract: Resolution of the complex multiphase swirling flow field in a hydrocyclone using computational fluid modelling techniques is not a trivial task. CFD Modelling technology is not perfect and it is certainly still possible to improve our understanding of the fundamentals and the models needed to describe them. Nevertheless, computational modelling techniques are being used to compare and understand the workings of different hydrocyclone designs and modes of operation.

Until now, CFD has been the realm of the research analyst more than the plant or design engineer. The development of in house CFD expertise may be seen as prohibitive in terms of time and cost. These two factors have presented a barrier to the use of CFD by the hydrocyclone industry, in spite of improvements in modelling capability.

This paper describes how automated CFD tools have been developed based on documented best practices. The bespoke tool development described will enable a non-CFD analyst to carryout hydrocyclone simulations. The paper will also consider the advantages and limitations of different computational fluid dynamic techniques applicable to hydrocyclone modelling.

Notes:

  • Using CFD to optimize hydrocyclone design based on application. This allows for customized cyclones that are specific to the application.
  • For CFD analysis by using tetrahedral meshing around the inlet will provide a closer fitting mesh.
  • A CFD analysis of a particular design will help identify the fluid flow within the cyclone.
  • CFD allows for multiple design iterations without having to manufacture any prototypes.

A simple procedure for design and performance prediction of Bradley and Rietema hydrocyclones

L. R. Castilho and R. A. Medronho, “A simple procedure for design and performance prediction of Bradley and Rietema hydrocyclones,” Minerals Engineering, vol. 13, no. 2, pp. 183–191, Feb. 2000, doi: 10.1016/S0892-6875(99)00164-8.

Abstract Hydrocyclones were originally designed to promote solid-liquid separations but nowadays they are also used for solid-solid, liquid-liquid and gas-liquid separations. Although a hydrocyclone is a very simple equipment to build, the use of custom-made cyclones is not widely used. This is probably due to the lack of a simple procedure for hydrocyclone design. In the present work a procedure is presented, which allows the design and performance prediction of hydrocyclones that follow Bradley and Rietema recommended geometries, that are the only two well-known families of geometrically similar hydrocyclones. The procedure proposed here resulted in little error, when the results were compared with experimental data. Additionally, a comparison of both families of hydrocyclones revealed that, for a given hydrocyclone diameter and at the same operational conditions, Bradley hydrocyclones provide higher efficiencies, while Rietema hydrocyclones give higher capacities.

Notes:

  • Design of a hydrocyclone is made up of non-moving parts: The cylindrical top section with a tangential inlet connected bellow is a conical part that has a circular opening at the bottom. The top of the cyclone is closed off with a hole in the middle that has a pipe extruded downward from the top that is the vortex finder.
  • Paper provides relevant equations used in hydrocyclone design.
  • Bradley hydrocyclones = higher efficiencies while Rietema hydrocyclones = higher capacities

Optimising small hydrocyclone design using 3D printing and CFD simulations

D. Vega-Garcia, P. R. Brito-Parada, and J. J. Cilliers, “Optimising small hydrocyclone design using 3D printing and CFD simulations,” Chemical Engineering Journal, vol. 350, pp. 653–659, Oct. 2018, doi: 10.1016/j.cej.2018.06.016.

Abstract The use of small hydrocyclones for the separation of particles in the micron range is of growing interest. However, these hydrocyclones are typically limited to conventional shapes or restricted to specific outlet sizes, which can lead to sub-optimal performance. The aim of this study is to present a method for the optimisation of small hydrocyclone design. This method consists of four steps that combine designing, Computational Fluid Dynamics (CFD) simulations, 3D printing and experimental testing. A 3D printed 10 mm hydrocyclone was shown first to match the performance of a ceramic equivalent, followed by factorial experiments with a set of printed hydrocyclones of different spigot and vortex finder diameters. A CFD model for small hydrocyclones was implemented and, following validation with the experimental data, used to simulate small hydrocyclone designs with parabolic walls. The model predicted improved separation performance compared to the conventional conic wall designs. In a novel development, a 10 mm hydrocyclone with parabolic walls was 3D printed and the prediction confirmed experimentally. The solids recovery and concentration ratio were increased by 10 percentage points and 0.2, respectively, for a 0.5 g/L yeast suspension and at an equivalent pressure drop. The use of 3D printing to manufacture small hydrocyclones of various designs has been proven in this study to be practical and to allow rapid prototyping design informed by CFD simulations. This is a significant improvement in the cost, time and versatility associated to hydrocyclone design and can lead to enhanced separation performance. Notes:

  • Different inlet configurations affect the recovery of solids
  • Vortex finder shape effects recovery of solids and separation efficiency
 	Possibly explore other more complex geometries that are not easily manufactured using traditional manufacturing techniques
  • Limited testing on small hydrocyclones due to only having a small selection of commercially available hydrocyclones.
  • Traditional manufacturing methods of hydrocyclones limit customization and experimental designs. 3D printing can eliminate this boundary.
  • Parabolic walled design had a higher solids recovery rate.

Google Scholar Search: Novel Hydrocyclone Design

Novel conical section design for ultra-fine particles classification by a hydrocyclone

J. Ye, Y. Xu, X. Song, and J. Yu, “Novel conical section design for ultra-fine particles classification by a hydrocyclone,” Chemical Engineering Research and Design, vol. 144, pp. 135–149, Apr. 2019, doi: 10.1016/j.cherd.2019.02.006.

Abstract To overcome the limitation of the conventional hydrocyclone for the ultra-fine particles classification, the novel conical section design of the hydrocyclone is computationally investigated in this work. The electrolytic manganese dioxide (EMD, MnO2) powder, whose size is in the range from 0.2 μm to 70 μm, is took as a study case, and the feed solid concentration (SC) is up to 20%wt. The conical section with the modified cone design is proposed to enhance the performance of hydrocyclones. In addition, all the hydrocyclones are equipped with an arc inlet to obtain the pre-classification effect. The micron particles classification with the demarcation at 5 μm is accomplished in the novel hydrocyclone as the classification sharpness (Ss) is improved from 0.833 to 0.938 at the feed solid concentration of 5% wt. The combination of moderate conical length and modified cone with wide radial space near spigot is the outline of the high classification sharpness hydrocyclone. The dynamics analysis illustrates that the classification performance is attributed to the comprehensive effects of force, residence time, and separation space.

Notes:

  • Highest separation sharpness can be achieved by creating a balance between long cone section (high separation efficiency, fine particle in underflow) & short cone section (loss of coarse product in overflow).
  • Medium-length cone with moderately large radial space gives high level force field and sufficient separation space.
  • Wider cone design achieves improvement of classification sharpness at the cost of coarse product loss.
  • The effect of drag force is more significant on coarse particles


Effect of vortex finder diameter on the performance of a novel hydrocyclone separator

L. G. M. Vieira and M. A. S. Barrozo, “Effect of vortex finder diameter on the performance of a novel hydrocyclone separator,” Minerals Engineering, vol. 57, pp. 50–56, Mar. 2014, doi: 10.1016/j.mineng.2013.11.014.

Abstract Hydrocyclones are equipments widely used by the mineral industry, but it is possible to highlight its operation in desliming, selective classification, thickening and pre-concentration. Our research group designed a new hydrocyclone. In this novel device, the conical section of a conventional hydrocyclone was replaced by a conical filtering wall and the equipment was named filtering hydrocyclone. During the operation of this novel hydrocyclone, besides the underflow and overflow streams, there is another stream of liquid, resulting from the filtrate produced in the porous cone. In the present work, the influence of vortex finder diameter (Do) of a filtering hydrocyclone was analyzed by an experimental and CFD study. Data from a conventional hydrocyclone of the same configuration were also obtained. The results indicated that the performance of separation process was significantly improved with this new equipment. Depending on the specific functions of the separator (as a classifier or thickener) the best values of Do were also found for the filtering hydrocyclone.

Notes:

  • Increasing overflow diameter reduces separation efficiency for fine particles.
  • Reducing vortex finder diameter increased efficiency.
  • To separate fine particles use a smaller overflow diameter.
  • Hydrocyclones used in this work were made of brass.

Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics

K.-J. Hwang, Y.-W. Hwang, and H. Yoshida, “Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics,” Chemical Engineering Science, vol. 85, pp. 62–68, Jan. 2013, doi: 10.1016/j.ces.2011.12.046.

Abstract Several novel hydrocyclones are designed to improve fine particle separation using computational fluid dynamics. The effects of inlet size, number of inlets and top-plate types on the particle separation efficiency and cut-size sharpness are discussed based on the same feed flow rates. The fluid and particle flows are simulated using a segregated, steady-state, 3-dimensional implicit numerical solver supplied by FLUENT software. The governing equations are coupled using the SIMPLE algorithm, while the Reynolds stress model is employed for the hydrocyclone turbulent model due to its' anisotropic nature. Particle trajectories are simulated based on a Lagrangian frame considering the continuous phase interactions. The simulated particle separation efficiencies approximately agree with the available experimental data. The results show that increasing the inlet number and narrowing the inlet width are effective ways to improve the particle separation efficiency due to the increase in fluid velocity in the cylindrical parts of hydrocyclone. A cone-shaped top-plate reduces the fine particle circulation area near the outer surface of overflow conduit, significantly improving the separation efficiency of fine particles. However, increasing the cone angle has a contrary effect because of the decrease in particle residence time. Although installing an extra guide-channel from the inlet may also improve the fine particle separation efficiency, it is not effective for particle classification because of reduced particle cut-size sharpness.

Notes:

Google scholar search:Hydrocyclone Effect of Tangential Feed Inlet

Effects of curvature radius on separation behaviors of the hydrocyclone with a tangent-circle inlet

C. Zhang, D. Wei, B. Cui, T. Li, and N. Luo, “Effects of curvature radius on separation behaviors of the hydrocyclone with a tangent-circle inlet,” Powder Technology, vol. 305, pp. 156–165, Jan. 2017, doi: 10.1016/j.powtec.2016.10.002.

Abstract An appropriate design of the inlet type has been proved to be an effective approach to improve the performance of a hydrocyclone. Until now, there is still no detail analysis on the mechanism underlying the flow control by the inlet type. In this paper, numerical simulation was conducted to investigate effects of curvature radius on the separation performance of the hydrocyclone with a tangent-circle inlet. The validity of the approach was verified by the reasonably good agreement between the predicted and measured results in terms of water velocities and particle partition curves. The simulating results were further analyzed in aspects of the flow field, pressure drop and separation performance. Results showed that a smaller curvature radius could increase the tangential velocity and the pressure gradient. Besides, the turbulence kinetic energy in the inlet section and the annular section are reduced by decreasing the curvature radius. Meanwhile, the symmetry of the inner flow field was improved by reducing the curvature radius. All these factors enhanced the radial regular distribution of particles in the inlet section and reduced influences of the short circuit flow on relatively coarse particles. Therefore, the classification precision was improved when using a tangent-circle inlet with a smaller curvature radius compared with base hydrocyclone.

Notes:

Search method?: Search

L. Ni, J. Tian, T. Song, Y. Jong, and J. Zhao, "Optimizing Geometric Parameters in Hydrocyclones for Enhanced Separations: A Review and Perspective," Separation and Purification Reviews, vol 48, pp 30-51, 2019.

Abstract Hydrocyclones have been extensively applied for solid–liquid or liquid–liquid separations in various industries. However, the exact mechanisms underlying the enhanced separation technologies based on the optimization of geometric parameters of hydrocyclones remain unclear, and a number of research teams have performed numerous studies to enlarge the application scope of hydrocyclones by optimizing geometric parameters. This review provides a comprehensive state-of-the-art review of hydrocyclone enhanced-separation technologies. The enhanced-separation technologies are categorized into ten groups: cylindrical section, inlet, vortex finder, underflow pipe, conical section, hydrocyclone inclination angle, hydrocyclone insertion, conical-section/apex water injection, reflux device, and multi-hydrocyclone arrangement. These enhanced-separation technologies were analyzed and summarized according to the key separation-performance parameters of hydrocyclones, such as separation efficiency, cut size, split ratio, energy consumption, and capacity. It is expected that both the reviewed contents and the proposed challenges and future methodologies and technologies may provide research fellows working in this field with an improved understanding of enhanced separation technologies of hydrocyclones.

Notes:

  • bulk properties change with cyclone size, to get higher capacity increase number of hydrocyclones
  • bigger cyclones have low energy loss and large capacity
  • cylindrical section length dictates residence time
  • problems with separation and energy happen at junction of cylindrical and conical sections
  • there is an optimum inlet size
  • different size particles are effected greatly by different aspects of cyclone design

Performance of Hydrocyclones with Different Geometries by Vieira, Silverio, Damasceno, and Barrozo

L. G. M. Vieira,* B. C. Silverio, J. J. R. Damasceno and M. A. S. Barrozo, "Performance of Hydrocyclones with Different Geometeries," Canadian Journal of Chemical Engineering, vol 89, pp. 655-662, Aug 2011.

Abstract Hydrocyclones belong to an important group of equipments designed to solid–liquid or liquid–liquid separation in a centrifugal field. It is possible to adapt a hydrocyclone to the accomplishment of several industrial activities depending on the geometrical relations among its main dimensions. The operation and design of these devices are relatively simple; however, the flow inside them is very complex and its prediction is very difficult. For that reason, most models that are used to predict hydrocyclone performance are empirical ones. The objective of this work was to study the influence of geometric variables in the performance of hydrocyclones, using CFD and response surface techniques. The obtained results show that it was possible to find an optimum hydrocyclone design, that is, geometric relationships that lead to Euler number and cut size in minimum levels.

Notes:

  • Set equation hasn't been made because hydrocyclone has turbulent flow, vortex breakdown, flow inversions, and an air core
  • Empirical formulas mostly used, do not work outside of test parameters
  • To maximize efficiency minimize cut size
  • Minimum energy is Euler Number
  • Euler Number relates local pressure drop and kinetic energy
Cookies help us deliver our services. By using our services, you agree to our use of cookies.