Colorimeter.jpg

Template:Statusboxtop Template:Status-design Template:Status-model Template:Status-prototype Template:Status-verified You can help Appropedia by contributing to the next step in this OSAT's status. Template:Boxbottom This project details an open-source colorimeter, which is made from open source electronics and 3-D printable components. This is part of a larger project to reduce the cost of scientific equipment using open-source hardware. [1]

Introduction

Colorimetric analytical methods are likely to be the most commonly applied methods for determining the concentration of dissolved species. Many dissolved species absorb light of a particular wavelength and the amount absorbed as the light passes through a given length of solution increases with increasing concentration the species; higher concentrations absorb more light than do lower concentrations. The relationship between absorption and concentration is defined by the Beer-Lambert law:http://en.wikipedia.org/wiki/Beer-Lambert.

A colorimeter or a spectrophotometer is employed to measure absorption at a specific wavelength. Light is usually filtered to permit only a narrow band of light at the absorbance peak wavelength for the species measured. The apparatus typically reports results in concentration units but also reports absorbance units or transmittance.

Design files: http://www.thingiverse.com/thing:45443

BOM:

Instructions

  1. Print the parts and clean them up so everything fits together nicely. Push M3 nuts into their appropriate slots at each corner of the case body - slots open to interior.
  2. Cut the proto board down to size (about 27mm x 46mm) and drill holes to match those in the sides of the case.
  3. Loosely attach the boards to the interior of the case with a couple screws each and push the cuvette holder into place (no cover) and mark the approximate locations where the sensor and LED must be placed on the boards to align with the windows in the cuvette holder.
  4. Remove the boards from the case and solder the components to their respective boards at the points marked. Leave the LED leads a bit long so it can be moved to aim the beam through the hole.
  5. Solder the conductors per the schematic. (The io pins can be soldered to directly on the LCD shield if you're careful, otherwise different means will be required, like not using the shield as a shield.)
  6. Fit the boards back into the case, this time firmly.
  7. Download and install the firmware on the Arduino.
  8. Fit the LCD shield and power the device (surplus wall wart of appropriate voltage or USB power will work).
  9. Place the cuvette holder back into position (no cover) and use the menu system to select "Calibrate". The LED will illuminate for a few seconds - make sure that the majority of light passes as straight as possible through the cuvette holder windows and impinges upon the sensor. If the LED/sensor are high or low, reshape the cuvette windows with a small rat tail file or suitably sized drill bit.
  10. After the LED is properly aimed, remove the cuvette holder and align and affix the cover to the case with four M3 screws and washers.
  11. Push the cuvette holder through the opening in the cover and check that the lid fits nicely into recess.
  12. Follow the appropriate protocol for calibration (yet to be built into the firmware - forthcoming).


Applications

See also

References

  1. Pearce, Joshua M. 2012. “Building Research Equipment with Free, Open-Source Hardware.Science 337 (6100): 1303–1304. [1]
Cookies help us deliver our services. By using our services, you agree to our use of cookies.