Warning! You are not logged in. Log in or create an account to have your edits attributed to your username rather than your IP, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 56: Line 56:
In monolithic MJ devices, each semiconductor layer is grown on top of one another. However, if the lattice constants of the crystals in adjacent layers do not match this will result in lattice strain and potentially dislocations. These dislocations cause defects to form in the crystal structure leading to unwanted recombinations and subsequently a decrease in cell efficiency. For this reason, it is advantageous to select semiconductor materials that have matching or closely similar lattice constants. Figure 5 shows a list of common MJ semiconductors and their lattice constants. The turquoise lines indicate the lattice constants for mixtures of the two connected materials.
In monolithic MJ devices, each semiconductor layer is grown on top of one another. However, if the lattice constants of the crystals in adjacent layers do not match this will result in lattice strain and potentially dislocations. These dislocations cause defects to form in the crystal structure leading to unwanted recombinations and subsequently a decrease in cell efficiency. For this reason, it is advantageous to select semiconductor materials that have matching or closely similar lattice constants. Figure 5 shows a list of common MJ semiconductors and their lattice constants. The turquoise lines indicate the lattice constants for mixtures of the two connected materials.


[[File:Latticeconstants.JPG|center|thumb|Figure 5: Lattice constants of semiconductor alloys (Román, 2004)]]
[[File:Latticeconstants.JPG|center|thumb|Figure 5: Lattice constants of semiconductor alloys (Román, 2004]]


It can be seen that few materials have perfectly aligned lattice constants. For this reason, lattice-mismatched, or metamorphic{{W|metamorphic}}, MJ cells are starting to be developed as this allows for a much greater degree of freedom in semiconductor selection. The potential for metamorphic cells lies in the ability of manufacturers to utilize cheaper materials that also possess band gaps near the optimal values for maximum theoretical efficiency. In certain cases, these benefits will outweigh the recombination losses due to lattice mismatch.
It can be seen that few materials have perfectly aligned lattice constants. For this reason, lattice-mismatched, or metamorphic{{W|metamorphic}}, MJ cells are starting to be developed as this allows for a much greater degree of freedom in semiconductor selection. The potential for metamorphic cells lies in the ability of manufacturers to utilize cheaper materials that also possess band gaps near the optimal values for maximum theoretical efficiency. In certain cases, these benefits will outweigh the recombination losses due to lattice mismatch.
Warning! All contributions to Appropedia are released under the CC-BY-SA-4.0 license unless otherwise noted (see Appropedia:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here! You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted material without permission!
Cancel Editing help (opens in new window)
Cookies help us deliver our services. By using our services, you agree to our use of cookies.