Line 14: Line 14:
Wikipedia:[https://en.wikipedia.org/wiki/Aligner]
Wikipedia:[https://en.wikipedia.org/wiki/Aligner]
*"An aligner, or mask aligner, is a system that produces integrated circuits (IC) using the photolithography process. It holds the photomask over the silicon wafer while a bright light is shone through the mask and onto the photoresist. The "alignment" refers to the ability to place the mask over precisely the same location repeatedly as the chip goes through multiple rounds of lithography."
*"An aligner, or mask aligner, is a system that produces integrated circuits (IC) using the photolithography process. It holds the photomask over the silicon wafer while a bright light is shone through the mask and onto the photoresist. The "alignment" refers to the ability to place the mask over precisely the same location repeatedly as the chip goes through multiple rounds of lithography."
[[Image:123.jpg]]


==History==
==History==

Revision as of 04:38, 17 September 2020

Literature review : Mask Aligner

Background

Searches

  • Google search for Mask Aligner
  • Wikipedia


Mask Aligner/Aligner

Wikipedia:[1]

  • "An aligner, or mask aligner, is a system that produces integrated circuits (IC) using the photolithography process. It holds the photomask over the silicon wafer while a bright light is shone through the mask and onto the photoresist. The "alignment" refers to the ability to place the mask over precisely the same location repeatedly as the chip goes through multiple rounds of lithography."

History

  • There are several types of mask aligners. The early contact mask aligners placed the mask in direct contact with the wafer but doing so would damage the substrate. The proximity mask aligners held the mask slightly above the substrate to avoid the damage but doing so made it difficult to work on manually. The projection mask aligners that was introduced by Perkin-Elmer in 1973 held the mask separately from the chip and this made the adjustment of the image much easier.
  • MEMS and Nanotechnology Exchange
  • Layout and Mask Conventions

Market Survey

  • SUSS Microtec is one of the largest manufacturers of mask aligners. They promise high alignment accuracy, superior quality, and sophisticated exposure optics. SUSS MicroTec design their mask aligners for lithography applications like in the field of 3D packaging, MEMS, LED, compound semiconductors, power devices, photovoltaic, nanotechnology, and wafer-level optics.
  • The three major automated mask aligner is MA300 Mask Aligner, MA200 GEN3 Mask Aligner, and MA 100/150E GEN2 Mask Aligner.
  • https://www.suss.com/en/products-solutions/mask-aligner/ma12

List of References

A Compact Low-Cost Low-Maintenance Open Architecture Mask Aligner for Fabrication of Multilayer Microfluidics Devices

Quang Long Pham, Nhat-Anh N. Tong, Austin Mathew, Roman S. Voronova

A custom-built mask aligner (CBMA), which fundamentally covers all the key features of a commercial mask aligner, while being low cost, lightweight, and having low power consumption and high accuracy is constructed. The CBMA is comprised of a custom high fidelity LED light source, vacuum chuck and mask holder, high-precision translation and rotation stages, and high-resolution digital microscopes.

Keywords: mask aligner, photolithography, microfluidics, microfabrication, multi-height

Creating a Mechanical Mask Aligner workaround to be used with Photolithography

Mateusz Klimkiewicz, WORCESTER POLYTECHNIC INSTITUTE

A machine like that would be very useful for research purposes due to the uses of photolithography in micro builds and circuits. The purpose of this MQP was to build a mechanical workaround for the old mask aligner system and allowing the machine to be revived in the future.

The holographic mask aligner

Published in: 1993 Fourth International Conference on Holographic Systems, Components and Applications S. Gray, F. Clube, D. Struchen INSPEC Accession Number: 4577690

Total internal reflection holography has successfully been implemented into an exposure tool for microlithography. The operation of this system, the world’s first holographic mask aligner, is described, and the key components (focus, alignment, and the holographic mask) are discussed.

A novel shadow mask aligner based on three points levelling for wedge error compensation

Pankaj B Agarwal, Deepak Kumar Panwar, Bijendra Kumar, and Ajay Agarwal : Engineering Research Express, Volume 2, Number 1

This paper reports a novel shadow mask aligner, which is capable of aligning planar with ~1 μm alignment error as well as provision to compensate the wedge error by using movements of three precision linear actuators, spotted under an optical microscope. The use of three points leveling also overcomes the common error of the upper assembly bending, which could occur with time after its continuous use.

Mask aligner lithography simulation - From lithography simulation to process validation

K.Motzek, S.Partel, A.Bramati, U.Hofmann, N.Unal, M. Hennemeyer, M.Hornung, A.Heindl, M. Ruhland, A.Erdmann, P.Hudek

  • This paper compares the result between simulated and experimental results where the authors investigate the predictive qualities of lithography simulation. And this is done by using a properly calibrated photoresist model. The dissolution rate monitors are proved to be an excellent tool to calibrate the development models.
  • The paper also demonstrated the progress that can be made in lithography simulations when the mask aligner illumination system is combined with accurate modeling of photoresist development.
  • The data obtained from the experiments and simulations show that lithography simulation can replace test exposure series in the cleanroom.

Fine pattern lithography for large substrates using a holographic mask aligner

A.R.Nobari, S.Gray, F.Clube, D.Struchen, S Malfoy, N. Magnon, B.Le. Gratiet

Computer controlled mask aligner modified Moire Technique

V.T. Chitnis, Rina Sharma, A.K.Kanjilal, Ram Narain, Y. Uchida



Advanced mask aligner lithography (AMALITH)

Reinhard Voelkel, Uwe Vogler, Arianna Bramati, Tina Weichelt, Lorenz Stuerzebecher, Uwe D. Zeitner, Kristian Motzek, Andreas Erdmann, Michael Hornung, Ralph Zoberbier


Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks

T. Weichelt, U. Vogler, L. Stuerzebecher, R. Voelkel, and U. D. Zeitner


Advanced mask aligner lithography: new illumination system

Reinhard Voelkel, Uwe Vogler, Andreas Bich, Pascal Pernet, Kenneth J. Weible, Michael Hornung, Ralph Zoberbier, Elmar Cullmann, Lorenz Stuerzebecher, Torsten Harzendorf, and Uwe D. Zeitner

Specification of TAMARAK 152 Mask Aligner

Reference : University of Memphis

Cookies help us deliver our services. By using our services, you agree to our use of cookies.