List of Search Terms

  • open source air quality sensor

List of References

California Air Resources Board Outlines of Measurement Technologies

  • Gives General information of types of pollution and how to sense that pollution
  • Potential to make field instrument, since those are expensive

hackAIR

  • Do it yourself air quality sensors with the data analyzed by the hackAIR application
  • Focuses on Particulate Matter, and other more common air pollutants
  • Three types of Builds, a simple cardboard build, a home sensor and a mobile sensor
  • hackAIR main website hackAIR.eu
 hackAIR carboard TutorialhackAIR home tutorialhackAIR mobile tutorial

Abraham, Sherin, and Xinrong Li. “A Cost-Effective Wireless Sensor Network System for Indoor Air Quality Monitoring Applications.” In FNC/MobiSPC, 165–171, 2014.Article

  • Monitors Indoor Air Quality of CO2,CO, VOCs, Ozone, temperature, relative humidity, and dew point
  • Has Calibrations for the sensors
  • Will be useful to compare how to calibarate sensors and shows that indoor monitoring has some advances

Balasubramaniyan, C., and D. Manivannan. “IoT Enabled Air Quality Monitoring System (AQMS) Using Raspberry Pi.” Indian Journal of Science and Technology 9, no. 39 (October 27, 2016). Article

  • Rasberry Pi can be used to run sensors that cover CO2, CO, NOx, and NH3
  • For both indoor and outdoor use

Zelinger, Z., M. Střižı́k, P. Kubát, Z. Jaňour, P. Berger, A. Černỳ, and P. Engst. “Laser Remote Sensing and Photoacoustic Spectrometry Applied in Air Pollution Investigation.” Optics and Lasers in Engineering 42, no. 4 (2004): 403–412.

  • Example of application of Spectroscopy and how to impliment it

Hanst, Philip L. “Air Pollution Measurement by Fourier Transform Spectroscopy.” Applied Optics 17, no. 9 (1978): 1360–1366.

  • Describes how to limit water vapor interference in infrared sensing ranges inorder to get better resolution of data

Haus, R., K. Schäfer, W. Bautzer, J. Heland, H. Mosebach, H. Bittner, and T. Eisenmann. “Mobile Fourier-Transform Infrared Spectroscopy Monitoring of Air Pollution.” Applied Optics 33, no. 24 (1994): 5682–5689.

  • Remote sensing of a large number of atmospheric molecules
  • Useful in control of pollution

Zelinger, Zdeněk, Pavel Kubát, Michal Střižík, Klára Bezpalcová, Zbyněk Jaňour, Pavel Danihelka, Sylva Drábková, Milada Kozubková, Pavel Berger, and Alexandr Černỳ. “Urban Air Pollution and Its Photochemistry Studied by Laser Spectroscopic Methods.” In Remote Sensing of the Atmosphere for Environmental Security, 301–316. Springer, 2006.

  • Techniques for applying spectroscopy to atmospheric models

Siebert, Peter, Gerald Petzold, A. Hellenbart, and Jörg Müller. “Surface Microstructure/Miniature Mass Spectrometer:. Processing and Applications.” Applied Physics A 67, no. 2 (1998): 155–160.

  • Techniques that may help in constructing the spectrometer and fixing any potential mechanical issues

So, Pui-Kin, Bi-Cheng Yang, Wen Li, Lin Wu, and Bin Hu. “Simple Fabrication of Solid-Phase Microextraction with Surface-Coated Aluminum Foil for Enhanced Detection of Analytes in Biological and Clinical Samples by Mass Spectrometry.” Analytical Chemistry 91, no. 15 (2019): 9430–9434.

  • Techniques for aiding in detection of particles when testing the efficiency of the system.

Kaufman, Yoram J., and Robert S. Fraser. “Light Extinction by Aerosols during Summer Air Pollution.” Journal of Climate and Applied Meteorology 22, no. 10 (1983): 1694–1706.

  • Optical thickness, wavelengths in eight spectral bands

Collis, R. T. H., and E. E. Uthe. “Mie Scattering Techniques for Air Pollution Measurement with Lasers.” Opto-Electronics 4, no. 2 (1972): 87–99.

  • Mie scattering is a constant in atmospheric measurements so being able to account for it in measurement is important
Cookies help us deliver our services. By using our services, you agree to our use of cookies.