New book - 'Building a Better World in Your Backyard' - on Kickstarter (sponsored friend)

Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

From Appropedia
Jump to: navigation, search

Upblogo.png Developed by The Universidad Privada Boliviana.
Click for more of our Open Source Appropriate Technology on Appropedia.


Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Contact Dr. Joshua Pearce - Apply here

MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, Instagram, YouTube

OSL.jpg


Pearce Publications: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education


Source[edit]

For preliminary results:

  • Omar Ormachea, Faviola Romero, Oscar Urquidi, Augusta Abrahamse, Joshua Pearce, Matthew de Vuono, Rob Andrews. Desarrollo de un sistema de monitoreo de radiación solar basado en un espectrómetro de amplio espectro y análisis de resultados preliminares. Procedings of the Simposio Nacional en Energías Renovables, Cochabamba, Bolivia, 2012. pages 97-104. open access

Abstract[edit]

Va-spectrometer.jpg
Va-spec.jpg

We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.



See also[edit]