No edit summary
No edit summary
Line 34: Line 34:


'''Absract:'''  This paper contains a summary of selected aspects of the epitaxial growth of rare-earth nitride thin films and the recent progress achieved in this field. The discussion is focussed on GdN, SmN, EuN compounds grown by both pulsed laser deposition and molecular beam epitaxy on different substrates including YSZ (001), c-plane (0001) AlN and GaN. While a N<sub>2</sub> plasma cell is used as a nitrogen source for growing EuN, we take advantage of the catalytic breakdown of molecular nitrogen by rare-earth atoms to grow GdN and SmN in the absence of activated N<sub>2</sub>. The structural, magnetic and transport properties of the thin films are assessed by reflection high-energy electron diffraction, x-ray diffraction, Hall Effect, temperature-dependent magnetization and resistivity.
'''Absract:'''  This paper contains a summary of selected aspects of the epitaxial growth of rare-earth nitride thin films and the recent progress achieved in this field. The discussion is focussed on GdN, SmN, EuN compounds grown by both pulsed laser deposition and molecular beam epitaxy on different substrates including YSZ (001), c-plane (0001) AlN and GaN. While a N<sub>2</sub> plasma cell is used as a nitrogen source for growing EuN, we take advantage of the catalytic breakdown of molecular nitrogen by rare-earth atoms to grow GdN and SmN in the absence of activated N<sub>2</sub>. The structural, magnetic and transport properties of the thin films are assessed by reflection high-energy electron diffraction, x-ray diffraction, Hall Effect, temperature-dependent magnetization and resistivity.
===[http://www.sciencedirect.com/science/article/pii/S0022024810006457 Epitaxial growth of GdN on silicon substrate using an AlN buffer layer] <ref>F. Natali, N.O.V. Plank, J. Galipaud, B.J. Ruck, H.J. Trodahl, F. Semond, S. Sorieul, L. Hirsch. "Epitaxial growth of GdN on silicon substrate using an AlN buffer layer", Journal of Crystal Growth  2010</ref>===
'''Abstract:'''  We report on the epitaxial growth of the intrinsic ferromagnetic semiconductor GdN on Si (111) substrates buffered by a thick AlN layer, forming a heteroepitaxial system with promise for spintronics.  Growth is achieved by depositing Gd in the presence of unactivated N2 gas, demonstrating a reactivity at the surface that is sufficient to grow near stoichiometric GdN only when the N2:Gd flux ratio is at least 100. Reflection high-energy electron diffraction and X-ray diffraction show fully (111)-oriented epitaxial GdN films. The epitaxial quality of the films is assessed by Rutherford backscattering spectroscopy carried out in random and channelling conditions. Magnetic measurements exhibit a Curie temperature at 65 K and saturation magnetisation of 7 mB/Gd in agreement with previous bulk and thin-film data. Hall effect and resistance data establish that the films are heavily doped semiconductors, suggesting that up to 1% of the N sites are vacant.


===References===
===References===

Revision as of 06:35, 17 November 2014


Article Overviews

Author, “Title”, Journal, Vol(No), page range, year

Epitaxial gadolinium nitride thin films [1]

Abstract: GdN thin films are deposited on MgO(100) by low-energy ion-beam-assisted molecular-beam epitaxy at elevated temperatures. Elemental analysis by secondary-ion mass spectrometry proves that a protective layer is imperative to avoid oxidation of the GdN films in air. In situ surface structural investigation of the growing GdN films by reflection high-energy electron diffraction reveals epitaxial film growth. This result is confirmed by x-ray diffraction structure and texture analysis. Accordingly, the GdN films on MgO(100) exhibit cube-on-cube epitaxy. Due to the epitaxial growth the crystalline quality of the films is by far higher than that of films previously reported of in literature.

Summery

This study's purpose was to produce high-quality GdN for the study of its electronic properties, which have a degree of uncertainty, with reported semiconducting, semimetallic, and insulating characteristics. The involves the growth of GdN by Ion Beam Assisted Molecular Beam Epitaxy (IBA-MBE)on a substrate of MgO (100) (lattice mismatch of 18.7%). Both materials crystallize in the NaCl structure. The IBA-MBE process involved the irradiation of the growth surface with nitrogen ions, which stimulated crystal growth. Comparisons to other qualities of GdN reported that the quality of GdN produced in this study surpassed that of previous attempts. The lattice parameter value of GdN to which the results were compared was a=0.4999 nm, as provided by The International Centre for Diffraction Data Powder Diffraction File; results showed a to be equal to 0.497±0.006 nm, and tending to the smaller end of that range. Twinning was present in the GdN layer, possibly caused by stacking faults, which commonly cause twinning in (100) oriented cubic thin films, but it was expected that optimization of the nitrogen ion to gadolinium atom flux ratio and growth temperature could further improve quality of the GdN surface.


GdN (111)heteroepitaxy on GaN(0001)by N2 plasma and NH3 molecular beam epitaxy [2]

Abstract: We report on the heteroepitaxial growth of thin films of rocksalt GdN on c-plane (0001) wurtzite GaN by molecular beam epitaxy (MBE) using either an N2 plasma or NH3 as the nitrogen source. In both cases, epitaxial films with fully oriented GdN (111)||GaN (0001) were deposited as demonstrated by ϴ–2ϴ X-ray diffraction. ϕ scans of GdN peaks demonstrate 6-fold symmetry along the growth axis implying the presence of two 3-fold-symmetric GdN (111) crystal variants in-plane. Electrical transport and magnetometry measurements on films grown using N2 plasma show that these GdN films are ferromagnetic below TC= 70K and degenerately dope or metallic from 10 to 300 K with magnetotransport signatures associatedᶿ with TC.

Epitaxial growth and properties of GdN, EuN and SmN thin films [3]

Absract: This paper contains a summary of selected aspects of the epitaxial growth of rare-earth nitride thin films and the recent progress achieved in this field. The discussion is focussed on GdN, SmN, EuN compounds grown by both pulsed laser deposition and molecular beam epitaxy on different substrates including YSZ (001), c-plane (0001) AlN and GaN. While a N2 plasma cell is used as a nitrogen source for growing EuN, we take advantage of the catalytic breakdown of molecular nitrogen by rare-earth atoms to grow GdN and SmN in the absence of activated N2. The structural, magnetic and transport properties of the thin films are assessed by reflection high-energy electron diffraction, x-ray diffraction, Hall Effect, temperature-dependent magnetization and resistivity.

Epitaxial growth of GdN on silicon substrate using an AlN buffer layer [4]

Abstract: We report on the epitaxial growth of the intrinsic ferromagnetic semiconductor GdN on Si (111) substrates buffered by a thick AlN layer, forming a heteroepitaxial system with promise for spintronics. Growth is achieved by depositing Gd in the presence of unactivated N2 gas, demonstrating a reactivity at the surface that is sufficient to grow near stoichiometric GdN only when the N2:Gd flux ratio is at least 100. Reflection high-energy electron diffraction and X-ray diffraction show fully (111)-oriented epitaxial GdN films. The epitaxial quality of the films is assessed by Rutherford backscattering spectroscopy carried out in random and channelling conditions. Magnetic measurements exhibit a Curie temperature at 65 K and saturation magnetisation of 7 mB/Gd in agreement with previous bulk and thin-film data. Hall effect and resistance data establish that the films are heavily doped semiconductors, suggesting that up to 1% of the N sites are vacant.


References


  1. J. W. Gerlach, J. Mennig, and B. Rauschenbach. "Epitaxial gadolinium nitride thin films", Applied Physics Letters, 90, 061919. 2007
  2. M.A.Scarpulla, C.S.Gallinat, S.Mack,J.S.Speck, A.C.Gossard. "GdN (111)heteroepitaxy on GaN(0001)by N2 plasma and NH3 molecular beam epitaxy", Elsevier B.V. 2009
  3. Franck Natali, Bart Ludbrook, Jules Galipaud, Natalie Plank, Simon Granville, Andrew Preston, Bin Le Do, Jan Richter, Ian Farrell, Roger Reeves, Steve Durbin, Joe Trodahl, and Ben Ruck. "Epitaxial growth and properties of GdN, EuN and SmN thin films", Phys. Status Solidi C 9, No. 3–4, 605–608. 2012
  4. F. Natali, N.O.V. Plank, J. Galipaud, B.J. Ruck, H.J. Trodahl, F. Semond, S. Sorieul, L. Hirsch. "Epitaxial growth of GdN on silicon substrate using an AlN buffer layer", Journal of Crystal Growth 2010
Cookies help us deliver our services. By using our services, you agree to our use of cookies.