Line 10: Line 10:
Introduction....
Introduction....


==Ghetto2Garden==
==Ghetto2Garden:Renewable Energy==
Describe Ghetto2Garden Purpose? ... <ref>A source</ref>
 
===Climate===
===Climate===
===Biogas===
===Biogas===

Revision as of 18:40, 9 June 2013

NEEDS TRANSLATION

Background

The Ghetto2Garden initiative was developed in an attempt to find an appropriate shelter to house 50 dogs and 10 cats who have been rescued from the streets of Santo Domingo and provide these animals with a care facility where they can live the rest of their days in peace and happiness. This program is still in infancy however we are beginning to make it grow, before we even have the land to begin the structure. This project is the result of the collaboration between RevArc and the Practivistas Dominicana program in an attempt to bring sustainable construction and renewable energy to the construction of the shelter.

Objective

The objective of this project is to begin working with the Ghetto2Garden dog shelter program and develop a suitable form of renewable energy to fuel part of the shelter.

Literature review

Introduction....

Ghetto2Garden:Renewable Energy

Climate

Biogas

Phases of anaerobic digestion
Hydrolysis and acidogenesis
Lipids, proteins, and carbohydrates are hydrolyzed by a series of microorganisms. Hydrolytic enzymes break the polymers into smaller molecules that can be digested by the microorganisms. Lipase converts lipid microorganism waste into fatty acid chains that, when hydrolyzed, form amino acids. Pyruvate and NADH are created by hexoses and pentoses and continue to be broken down into the final endo-products of this phase: lactate, propionate, acetate, and ethanol.
Acetogenesis and dehydrogenation
This phase is primarily responsible for the break down of volatile fatty acids into acetate and H2.
Methanogenesis
Methanogens can only function in anaerobic conditions and are mainly either H2/CO2 and acetate-consumers. These microbes transform the final biochemicals into methane, which is our main source of energy for the system. In some cases,a two step methanogenesis process is necessary to keep the balance of volatile fatty acids and H2 low. This must be tested and maintained to prevent high methane contents in the waste water. [1]
Benefits of Biogas
This type of system would result in a type of income resulting from housing the dogs. Fertilizer from the processed organic waste could be sold for profit. Also, biogas is a highly efficient form of energy. Excess natural gas or unprocessed biogas could be sold as well. The benefits including reduction volume of waste, complete decomposition of waste materials, nutrient capture and recycling. Environmentally reduces pathogens, odor reduction, reduces greenhouse gas emissions, and increases crop yield. [2]

Wind Energy

"The wind resource in the Dominican Republic is strongly dependent on elevation and proximity to the coastline. In general, the wind resource is best on hilltops, ridge crests, and coastal locations that have excellent exposure to the prevailing winds from the east. The extreme southwestern and northwestern regions of the country are estimated to have the greatest number of areas with good-to-excellent wind resources for utility-scale applications, because the upper-air winds and ocean winds are greatest in these regions."[3]

"The Dominican Republic has a good wind resource. Many locations boast an average wind speed of over 7 meters per second at 80 meters above sea level, and a number of locations offer average speeds greater than 8 meters per second. One global study found that roughly 13 percent of locations have wind speeds of 7 meters per second or greater, generally considered an indication that low-cost wind energy development is possible."[4]

[1]

"In Santo Domingo, losses due to module temperature would likely be larger than in most locations. The hourly mean ambient temperature in Santo Domingo is always above 20°C, exceeding 28°C in the early afternoon even during the coldest months and staying over 30°C throughout the middle of the day during the summer. This would result in very high module temperatures. However, the average wind speed is also relatively high, with hourly means above 3 meters per second over almost all the daylight hours throughout the year. Winds are also strongest during the early afternoon hours, when temperature is highest. With increased wind speed comes increased heat loss in the module due to convection, and therefore somewhat lower power degradation."[5]

[2] [3]

"The best wind resources are found in the southwestern provinces of Pedernales and Barahona and the northwestern provinces of Puerto Plata and Monte Cristi. Significant areas of good-to-excellent wind resource can be found in many other locations, such as well-exposed hilltops and ridge crests of the Samana peninsula and other near-coastal locations throughout the Dominican Republic and the major mountain ranges including Cordillera Septentrional, Cordillera Oriental, Cordillera Central, and Sierra Neiba. The mapping results show many additional areas of moderate wind resource for utility-scale applications or good wind resource for village power applications, including many east-facing coastal locations along the eastern and northern coasts of the Dominican Republic."

"The highest wind resource from June to August and December to February, with a maximum in July and a minimum in October. The diurnal pattern of wind speeds on exposed ridge crests tend to have the highest speeds during the night and early morning hours and lowest during mid-day."[6]

Solar Energy

"The solar power is a very powerful resource of energy, especially in areas with a vast quantity of sun by year, that's the main reason why the sun is the preferential renewable energy source from the nature; Enclosing tremendous opportunities for almost every country in the world makes it striking in economical and potential energy ways."

DNI stands for direct Normal Irradiation which is the amount of solar radiation received per unit area by a surface that is always held perpendicular (or normal) to the rays that come in a straight line from the direction of the sun at its current position in the sky. Typically, you can maximize the amount of irradiance annually received by a surface by keeping it normal to incoming radiation. This quantity is of particular interest to concentrating solar thermal installations and installations that track the position of the sun.[7]"GHI stands for Global Horizontal Irradiance. wich it's a geometrical position that claims how the irradiance from the sun affects a point on earth."

[4] [8]

"Judged globally, the solar resource in the Dominican Republic is quite good. Average GHI across the country generally ranges from 210 to 250 watts per square meter (W/m2), making it comparable with that of the U.S. Southwest and generally superior to areas along the coast of the Mediterranean Sea. DNI, on the other hand, although still higher than that of much of the globe, is significantly lower than in the Mediterranean and U.S. Southwest. Average values are mostly between 170 and 250 W/m2. Within the Dominican Republic, irradiance is generally higher in the western half of the country, both for GHI and DNI, with some of the best areas found in the southwest."

"Santo Domingo is the capital and largest city in the Dominican Republic, situated on the Caribbean Sea on the country’s southern coast. It is home to roughly one-quarter of the total population, making it the most important potential market for decentralized solar power production."


[5]

"Santo Domingo’s solar resource is very strong by global standards. The average GHI value at the Santo Domingo site is 5.45 kilowatt-hours (kWh) per square meter per day (227.1 W/m2). (See Figure 5.) This compares favorably with most of the rest of the Caribbean region and is significantly higher than the insolation in the areas of Europe and Asia where solar power penetration is currently highest. In Germany, for example, few locations sport a GHI over 3.0 kWh/m2/day, and virtually nowhere is the GHI above 3.5. The DNI average is 4.97 kWh/m2/day (207.1 W/m2) at the Santo Domingo site, again strong when compared globally, although not as much so. (See Figure 6.) The average DIF is 2.04 kWh/m2/day (85.0 W/m2). Compared to the rest of the Dominican Republic, Santo Domingo has a mediocre solar resource, both in terms of GHI and DNI"

[6] [7]

"The monthly mean GHI varies significantly throughout the year. (See Figure 7.) Average GHI is highest in April and May, with the May mean at 6.29 kWh/m2/day (262.1 W/m2). GHI is between 5.82 and 6.08 kWh/m2/day in March, June, July, and August, but it declines sharply throughout the rest of the year, falling below 5.07 kWh/m2/day for each month during October–February."

[8]

"Monthly mean DNI is much less variable over the course of the year. It peaks in March and April, with a March value of 5.45 kWh/m2/day. DNI is lowest in December, at 4.53kWh/m2/day, but all months during July–January are below4.85. DNI monthly means are more variable year-to-year, however."

"During the course of the day, GHI peaks in the early afternoon throughout the year, highest between 11 a.m. and 3 p.m. and usually peaking between 1 and 2 p.m. (See Figure 8.) The peak hourly mean is consistently over three times the daily mean. DNI is of course also highest during the middle of the day, but because it involves tracking the sun’s movement, the peaks more closely resemble plateaus that last from 10 a.m. to 5 p.m. The largest values for DNI are found in the mid-afternoon during February–May, early afternoon during June–September, and late morning during October–January."

[9]

"According to data from the annual reports of the Organismo Coordinator del Sistema Electrico (OC), electricity generation reaches its peak in the late summer months of July and August, with an average of 987,000 megawatt-hours (MWh) generated in July from 2005 to 2009. Monthly generation averages 950,000 MWh or more during May–October but is lower during the other half of the year, particularly in January and February."

"There is consistently a high level of unmet electricity demand in the Dominican Republic as well, often as much as 200,000 MWh per month. There is no clear pattern in the time of the year when unmet demand is highest over the years 2005–2009. Solar irradiance lines up reasonably well with demand, as GHI stays high through all the months of highest electricity use save September and October. DNI matches consumption less well, as it is relatively lower in late summer."

"Daily load curves show that the highest electricity demand occurs in the evening, from 7 p.m. to 11 p.m. This of course means that other solutions will be necessary to meet peak demand. During daylight hours, peak demand varies somewhat depending on the day of the week, falling as early as 12–1 p.m. or as late as 2–3 p.m. This matches up well with the daily variance in irradiance, although more so with GHI than DNI, as DNI dips right in the middle of the day in some months. Concentrated solar thermal power with storage would be an option for using solar energy to serve these evening demands." [9]

Bicycle Energy

Dog Power

Water Diversion hydration station?

References

Template:Reflist

Cookies help us deliver our services. By using our services, you agree to our use of cookies.