No edit summary
Line 32: Line 32:




== <br>Fehlenden Beweise?  ==
== <br>Fehlende Beweise?  ==


Biotech-Unternehmen neigen dazu, den Mythos, dass "es keine Hinweise auf schädliche Auswirkungen von gentechnisch veränderten Kulturen gibt zu verewigen". Wissenschaftler weisen darauf hin, dass das "Fehlen von Beweisen" (noch) nicht rechtfertig ein Beweis für das Fehlen von Auswirkungen ist. Die vorliegende mangelnde Kenntnis der Auswirkungen sollte strenge und intensive Forschung in Folge der möglichen langfristigen Auswirkungen der GVO verursachen, bis  GVO' bewiesen sicher sind.<br>
Biotech-Unternehmen neigen dazu, den Mythos, dass "es keine Hinweise auf schädliche Auswirkungen von gentechnisch veränderten Kulturen gibt zu verewigen". Wissenschaftler weisen darauf hin, dass das "Fehlen von Beweisen" (noch) nicht rechtfertig ein Beweis für das Fehlen von Auswirkungen ist. Die vorliegende mangelnde Kenntnis der Auswirkungen sollte strenge und intensive Forschung in Folge der möglichen langfristigen Auswirkungen der GVO verursachen, bis  GVO' bewiesen sicher sind.<br>

Revision as of 18:39, 24 April 2010

Template:308inprogress

Template:Lang

 

Ein gentechnisch veränderter Organismus ist ein Organismus dessen gentechnisches Material durch eine gentechnische manipulierung geändert ist. Genmanipulation verwickelt die Aufnahme der Gene aus einer anderen Art in das Wirtsgenom. Gene aus Tiere und Bakterien können in ein Pflanzegenom einsetzt werden um eine transgen funktionelle Pflanze zu erschaffen. Transgene Züchtung ist etwas ganz anderes als traditionele Züchtung und deshalb haben die Produkte der funktionellen Gene aus den gentechnisch veränderten Organismen vieleicht ziemlich viele umwelt Effekte.

Mehrere Antikörper und Arzneimittel wurden schon kommerziell produziert durch gentechnische manipulierung. Zum Beispiel Insulin der Säugetiere ist durch rekombinante DNS in Bakterien produziert. Diese Technik ist viel billiger als natürlicher Insulin aus konventioneller Biosynthese. Aber wenn gentechnische manipulierung angewendet wird, gibt es viele Ungewissheiten und Gefahren.

Im Gegensatz zu Insulin oder anderen GM Medikamenten und Hormonen die im Labor hergestellt wurden, kann man genetisch veränderte Kulturen nicht kontrolliert oder widerrufen, sobald sie in die Natur ((freigelassen)) werden. Zusätzlich zu den möglichen schädlichen Auswirkungen auf die Ökosysteme (einschließlich Agro-Ökosysteme), stellt die Einführung von GVO in die menschliche Nahrungskette eine beispiellose Gefahr für die öffentliche Gesundheit. Kein Wunder, dass GVO erhebliche Kontroversen seit den frühen 1990er Jahren, als es zuerst eingeführt wurde, verursacht hat.


 

Gefahren von GVOs

Die Unsicherheiten in GVO's sind beispiellose und unbeabsichtigte Auswirkungen auf die Umwelt. Die Expression des Transgens (die exogenen Gene integriert in den Wirtsorganismus) ist unsicher, und Gen-Silencing sowie Hochregulation des Gens trettet häufig in GVO auf. Aufgrund der differentiellen Genregulation Prozesse ist die Produktion von völlig neuartigen Proteinen möglich. Da die eingefügten Gene das Toxin die ganze Zeit produzieren, würde die Expression des Gens in allen Geweben und die ganze Zeit unbekannte Auswirkungen auf das Lebewesen die in der Regel mit der Anlage verbunden sind bringen. Nicht nur die Schadinsekten, die Blättern und Stängel schaden, sondern auch, dass Bestäuber die Nektar und Pollen brauchen auch durch das Toxin betroffen werden. Natürliche Feinde der Ernte Schädlingsbekämpfung, wie räuberische Insekten und höhere Organismen könnten nach der Fütterung auch von dem Gift in den betroffenen insekten getötet werden. Darüber hinaus wurde differentielle Expression von Genen in verschiedenen geweben der gleichen GVO auch dokumentiert (Kranthi et al. 2005). So kann der bakterielle Bt-Toxin in Bt-Baumwolle in den Wurzeln zum Ausdruck kommen, aber nicht in der Blüte, mit der Folge, dass der Baumwollkapselwurm, des jeweilige Schädlings Insekt unversehrt bleibt, während es ein Nachteil der mikrobiellen Gemeinschaft wäre.

 

Indirekte schädliche Auswirkungen von GVO-Kulturen auf die biologische Vielfalt ist ebenfalls üblich. Transgene Herbizid-tolerante (HT-) Kulturen (wie Monsanto Roundup Ready Kulturen), die wiederholte Appliation von Glyphosat Herbizid erleichtern, verursachen die Beseitigung aller "Unkraut", einschließlich einer breiten Palette von Laub-Pflanzen. Wenn die Laubaum-Pflanzen beseitigt sind, werden auch die Bestäuber und Vögel die von ihren Blüten und Früchten abhängen ebenfalls eliminiert. Die deletyeriouse Auswirkungen transgener Pflanzen auf Aviäre HT, Blumen und Insekten der biologischen Vielfalt wurde bereits dokumentiert (Bohan et al. 2005; Heard et al. 2006). Die Anwendung von Roundup-Herbizid, deren Anwendung von der GM Roundup Ready Pflanzen verbessert wird, ist bekannt, dass es die Sterblichkeit der beiden terrestiral und aquatische Frösche und andere Wassertiere (Relyea 2006; Perez et al. 2007) verbessert.

 


Es gibt verschiedene Research-Publikationen, die verschiedene Auswirkungen auf die Umwelt von GVO-Kulturen angeben (siehe unten). Das Risiko für die menschliche Gesundheit ist auch bedeutend, weil ein Toxin (zB Cry A1 Toxine) das für die Menschen unschädlich ist wenn es in Bakterien gemacht wird, durch die GV-Pflanze Zellen in vielerlei Hinsichten geändert wird auch in einige, die schädlich für den Menschen sind. Auswirkungen auf die menschliche Gesundheit sind besonders schwer zu erkennen, indem mann Kurzzeitstudien von allem, was in die menschliche Nahrung geht - ob ein Pestizid-oder Lebensmittel Farbstoff - anwendet. Mit gentechnisch veränderter Lebensmittel ist die Wahrscheinlichkeit der Entdeckung eines unmittelbaren Zusammenhangs sehr klein. Wie Schubert (2002) darauf hin wies: "Schnelle Toxizität könnte man rasch erkennen, sobald das Produkt den Markt tretet und es eine einzigartige Krankheit verursacht, wenn die Lebensmittel für die Rückverfolgbarkeit gekennzeichnet waren und die GM-Partien von Tryptophan. Bei Krebs oder andere häufigen Erkrankungen mit verzögertem Auftreten könnte es Jahrzehnte dauern, um zu erkennen, und vielleicht würde man nie ihre Ursache finden. "


Es gibt viele Veröffentlichungen über die Risiken von GVO. Eine der sorgfälltigsten und maßgeblichsten Berücksichtigungen der Umwelt - und Gesundheitsrisiken von GVO ist Genetic Engineering: Dream or Nightmare? von Mae-Wan Ho. Eine Sammlung der technischen Risiken GVO's von einer Gruppe von Wissenschaftlern ist die Biosafety First, beerbeitet von Terje Traavik und Lim Li Ching. Ein beliebter Ausleger ist Jeffrey M. Smith, dessen Seeds of Deception and Genetic Roulette ziemlich bekannt sind, auch wenn sie nicht viele wichtige wissenschaftliche Arbeiten zitiert. Ein weiterer beliebter Schriftsteller ist F. William Engdahl.



Fehlende Beweise?

Biotech-Unternehmen neigen dazu, den Mythos, dass "es keine Hinweise auf schädliche Auswirkungen von gentechnisch veränderten Kulturen gibt zu verewigen". Wissenschaftler weisen darauf hin, dass das "Fehlen von Beweisen" (noch) nicht rechtfertig ein Beweis für das Fehlen von Auswirkungen ist. Die vorliegende mangelnde Kenntnis der Auswirkungen sollte strenge und intensive Forschung in Folge der möglichen langfristigen Auswirkungen der GVO verursachen, bis GVO' bewiesen sicher sind.

Es gibt einen aktiven Druck von Unternehmen auf viele Forscher, das die Forschungsergebnisse die auf denn Verkauf von GV-Produkten auswirkungen haben könnten unterdrückt werden. Zunächst wird der Zugriff auf die geschützten gentechnisch veränderten Pflanzen einer unabhängigen Studie, allen unabhängingen Forschern verweigert. Zweitens, wenn der Zugang nicht verwehrt wird, gibt es einen Vertrag, in dem die Forscher gezwungen werden ihre Ergebnisse dem Arbeitgeber vorlegen, bevor diese an einer Zeitschrift zur Veröffentlichung gegeben werden. In fast allen Fällen erlaubt das Unternehmen keine Veröffentlichung, wenn die Ergebnisse negative Auswirkungen des Produkts zeigen. Laut einem neueren Scientific American (August 2009) Bericht: "Nur Studien, dass das Saatgut-Unternehmen jemals genehmigt sehen das Licht der Welt in einem peer-reviewed journal. In einer Reihe von Fällen, Experimente, die das indirekte go-ahead aus dem Samen Unternehmen hatten wurden später von der Veröffentlichung blockiert, weil die Ergebnisse of nicht schmeichelhaft waren. Es ist eine Frage den selektiven Ablehnungen und Zulassungen basierend auf Industriestandards Wahrnehmungen, wie "freundlich" oder "feindlich" ein bestimmter Wissenschaftler für die Verstärkung der Saatsgut-Technologie sein kann. "Endlich", wenn ein Papier Probleme mit gentechnisch veränderten Pflanzen bechreibt springen mehrere Kritiker auf, die schnell reagieren, die Arbeit in öffentlichen Foren kritisieren, Gegenbeweis Briefe schreiben und Sie politischen Entscheidungsträger, Fördereinrichtungen und Journal Editoren senden "(Waltz 2009).


 



A. Unexpected mortality of non-target Lepidoptera from pollen from Bt crop:
1. Losey, J.E., L.S. Rayor and M.E. Carter 1999. Transgenic pollen harms monarch larvae. Nature 399: 214.
2. Hansen, L and J Obrycki 2000. Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologia DOI 10.1007/s004420000502, published online: 19 August 2000.
3. Zangerl, A R, McKenna, D, Wraight, C L, Carroll, M, Ficarello, P, Warner, R and M R Berenbaum 2001. Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proc. Natl. Acad. Sci. USA 98: 11908-11912.
4. Stanley-Horn, G. P. Dively, R. L. Hellmich, H. R. Mattila, M. K. Sears, R. Rose, L. C. H. Jesse, J. E. Losey, J. J. Obrycki and L. C. Lewis 2001. Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc. Natl. Acad. Sci. USA 98: 11931–11936.
5. Anderson, P. L., R. L. Hellmich, M. K. Sears, D. V. Sumerford, and L. C. Lewis 2004. Effects of Cry1Ab-Expressing Corn Anthers on Monarch Butterfly Larvae. Environmental Entomology 33: 1109-1115.
6. Dively, G. P., R. Rose, M.K. Sears, R.L. Hellmich, D.E. Stanley-Horn, J.M. Russo, D.D. Calvin and P.L. Anderson 2004. Effects on monarch butterfly larvae (Lepidoptera: Danaidae) after continuous exposure to Cry1Ab-expressing corn during anthesis. Environmental Entomology 33: 1116–1125 (2004).

B. Unexpected high mortality of lacewings and silkworm from Bt crop:
7. Hilbeck, A., M Baumgartner, P M Fried and F Bigler 1998. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea. Environmental Entomology 276: 480-487.
8. Wang, Z-H, Shu Q-Y, Cui H-R, Xu M-K, Xie X-B & Y-W Xia 2002. The effect of Bt transgenic rice flour on the development of silkworm larvae and the sub-micro-structure of its midgut. Scientia Agricultura Sinica 35: 714-718.
9. Hilbeck, A and Schmidt 2006. Another view on Bt proteins. Biopesticides International 2 (1): 1-50.

C. Effect of Bt toxin on hoppers and dragonflies
10. Bernal, C C, Aguda, R M and M B Cohen 2002. Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis. Entomological Exp. Appl. 102: 21–28.
11. Ponsard, Sergine, Andrew P. Gutierrez and Nicholas J. Mills 2002. Effect of Bt-toxin (Cry1Ac) in transgenic cotton on the adult longevity of four Heteropteran predators. Environmental Entomology 31: 1197-1205.

D. Additonal mortality of honeybees from Bt crops:
12. Brodsgaard, H F, Brodsgaard C J, Hansen H & Lovei G L 2003. Environmental risk assessment of transgene products using honey bee (Apis mellifera) larvae. Apidologie 34: 139-145.

E. Bt-induced resistance in pest insects:
13. Huang, F., L. Buschman and R Higgins 1999. Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science 284: 965-966.

F. Elimination of pollinators and birds from GM crops:
14. Watkinson, A R, R P Freckleton, R A Robinson and W J Sutherland 2000. Predictions of biodiversity response to genetically modified herbicide-tolerant crops. Science 289: 1554-1557.

G. Impact on soil organisms.
15. Saxena, D, S Flores and G Stozsky 1999. Insecticidal toxin in root exudates from Bt corn. Nature 402: 480.

16. Tapp, H and G Stozsky 1998. Persistence of the insecticidal toxin from Bacillus thuringiensis subsp kurstaki in soil. Soil Biol. Biochem. 30: 471-476.

H. Horizontal gene transfer from GM crop to non-GM varieties.
17. Wheeler, CC, D Gealy and D O TeBeest 2001. Bar gene transfer from transgenic rice (Oryza sativa) to red rice (Oryza sativa). Rice Research: AAES Research Series 485: 33-37.
18. Greene, A E and R F Allison 1994. Recombination between viral RNA and transgenic plant transcripts. FEMS Microbiol. Ecol. 15: 127-135.
19. Serratos-Hernández, J.-A., J.-L. Gómez-Olivares, N. Salinas-Arreortua, E. Buendía-Rodríguez, F. Islas-Gutiérrez and A. de-Ita 2007. Transgenic proteins in maize in the Soil Conservation area of Federal District, Mexico. Frontiers in Ecology and the Environment 5: 247-252.
20. P.-N, A, J. Van Heerwaarden, H. R. Perales, J. A. Serratos-Hernandez, A. Rangel, M. B. Hufford, P. Gepts, A. Garay-Arroyo, R. Rivera-Bustamante and E. R. Álvarez-Buylla 2009. Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Molecular Ecology 18:4: 569-571.
21. A. Snow 2009. Unwanted transgenes re-discovered in Oaxacan maize. Molecular Ecology 18: 569-571.

I. Gene silencing in GM crops:
22. Kumpatla, S.P., W. Teng, W.G. Buchholz and T.C. Hall 1998. Gene silencing and reactivation in transgenic rice. Rice Genetics Newsletter 14: 155-159.

J. Persistence of Bt toxin in soil:
23. Stotzky, G. 2004. Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant and Soil 266: 77-89.
24. Sun, X, L. J. Chen, Z. J. Wu, L. K. Zhou and H. Shimizu 2006. Soil persistence of Bacillus thuringiensis (Bt) toxin from transgenic Bt cotton tissues and its effect on soil enzyme activities. Biology and Fertility of Soils 43: 617-620.

K. Toxic root leachate from Bt crop affecting soil insects and microbial activity:
25. Sun, C. Wu, Z., Zhang, Y. & Zhang, L. 2003. Effect of transgenic Bt rice planting on soil enzyme activities. Ying Yong Sgeng Tai Xue Bao 14: 2261-2264.

26. Saxena, D, Stewart, C N, Altosaar, I, Shu, Q & Stotzky, G 2004. Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B. thuringiensis corn, potato, and rice but not of B. thuringiensis canola, cotton, and tobacco. Plant Physiol. Biochem. 42: 383–387.
27. Wu, W-X., Ye, Q-F, Hang, M, Duan, X-J & Jin, W-M. 2004. Bt-transgenic rice straw affects the culturable microbiota and dehydrogenas and phosphatase activities in a flooded paddy soil. Soil Biol. Biochem. 36: 289-295.
28. Wu, W-X., Ye, Q-F. & Min, H. 2004. Effect of straws from Bt-transgenic rice on selected biological activities in waterflooded soil. European Journal of Soil Biology 40: 15-22.

L. Toxin released from Bt crops fatal to aquatic organisms:
29. Rosi-Marshall, E.J., J.L. Tank, T.V. Royer, M.R. Whiles, M. Evans-White, C. Chambers, N.A. Griffiths, J. Pokelsek & M.L. Stephen 2007. Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc. Natl. Acad. Sci. USA 104: 16204–16208.

M. Pathological effects of Bt toxin on rat hematopoetic system, spleen, heart and adrenal glands.
30. de Vendômois, J. S, F. Roullier, D. Cellier, Gilles-Eric Séralini 2009. A Comparison of the Effects of Three GM Corn Varieties on Mammalian Health. Int. Jour. Biol Sci. 5: 706-726. http://www.biolsci.org/v05p0706.htm

As a reviewer commented, “From the accumulating evidence it is clear that the large-scale introduction of GE crops containing entirely novel gene products in new combinations at high frequencies with their associated complex of non-target organisms will have unknown impacts on future agricultural and, ultimately, natural ecosystems” (Velkov et al. 2005).


Quellenangaben

  • D.A.Bohan, C. W. H. Boffey, D R.Brooks, S. J.Clark, A. M.Dewar, L. G. Firbank, A.J.Haughton, C. Hawes, M. S. Heard, M. J. May, J. L. Osborne, J.N. Perry, P. Rothery, D. B. Roy, R. J. Scott, G. R. Squire, I. P. Woiwod and G. T. Champion, Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proceedings of the Royal Society (London) B 272: 463–474 (2005).
  • F. William Engdahl, The Hidden Agenda of Genetic Manipulation., Global Research, 2007 ISBN 978 0973714722 
  • M.S. Heard, S.J. Clark, P. Rothery, J.N. Perry, D.A. Bohan, D.R. Brooks, G.T. Champion, A.M. Dewar, C. Hawes, A.J. Haughton, M.J. May, R.J. Scott, R.S. Stuart, G.R. Squire and L.G. Firbank, Effects of successive seasons of genetically modified herbicide-tolerant maize cropping on weeds and invertebrates. Annals of Applied Biology 149, 249-254 (2006). 
  • Mae-Wan Ho, Genetic Engineering: Dream or Nightmare? Third World Network, 2007. ISBN 983 974 730 4
  • Kranthi, K. R., S. Naidu, C. S. Dhawad, A. Tatwawadi, K. Mate, E. Patil, A. A. Bharose, G. T. Behere, R. M. Wadaskar and S. Kranthi 2005. Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera(Hübner) (Noctuidae: Lepidoptera). Current Science 89: 291-298.
  • GL Perez, A Torremorell, H Mugni, P Rodriguez, M Slange Vera, M do Nascimento, L Allende, J Bustingorry, R Escaray, M Ferraro, I Izaguirre, H Pizarro, C Bonetto, Donald P Morris and H Zagarese, Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecological Applications 17: 2320-2322 (2007).
  • Rick A. Relyea, The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications 16(5): 2022–2027 (2006).
  • David Schubert, A different perspective on GM food. Nature Biotechnology 20: 969 (2002).
  • Scientific American “A Seedy Practice” Aug 2009. http://www.scientificamerican.com/article.cfm?id=do-seed-companies-control-gm-crop-research
  • Jeffrey M. Smith, Seeds of Deception: Exposing Industry and Government Lies About the Safety of the Genetically Engineered Foods You're Eating. Yes! Books, 2003. ISBN 0972966587
  • Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods. Yes! Books, Fairfield, IA USA 2007. ISBN 9780972966528
  • Terje Traavik and Lim Li Ching, Biosafety First: Holistic approaches to risk and uncertainty in genetically modified organisms. Tapir Academic Press, 2007. ISBN 978-82 519 2113
  • V V, Velkov, A B. Medvinsky, M S Sokolov and A I. Marchenko, Will transgenic plants adversely affect the environment? Journal of Bioscience 30: 515–548 (2005).
  • Emily Waltz, GM crops: Battlefield. Nature 461: 27-32 (2009). 


See also

External links


Translated by: Heather Žibrat

Cookies help us deliver our services. By using our services, you agree to our use of cookies.