Get our free book (in Spanish or English) on rainwater now - To Catch the Rain.

Difference between revisions of "Design and Testing of a Low-Cost, Open Source, 3-D Printed Air-Bearing-Based Attitude Simulator for CubeSat Satellites"

From Appropedia
Jump to: navigation, search
m (See Also)
m
Line 7: Line 7:
  
 
[[image:cubesat.jpg|right|600px]]
 
[[image:cubesat.jpg|right|600px]]
 +
 +
{|style="border:1px solid black; background-color: lightgreen; margin-left:.1em; margin-top:2px; -moz-border-radius:15px;" align="right" width="120px"
 +
!<big>3-D Printed Air-Bearing-Based Attitude Simulator Actuation </big>
 +
|-
 +
|<center>{{#widget:YouTube|id=https://youtu.be/S9o48KEEqgY}} </center>
 +
|-
 +
|}
  
 
{|style="border:1px solid black; background-color: lightgreen; margin-left:.1em; margin-top:2px; -moz-border-radius:15px;" align="right" width="120px"
 
{|style="border:1px solid black; background-color: lightgreen; margin-left:.1em; margin-top:2px; -moz-border-radius:15px;" align="right" width="120px"
 
!<big>3-D Printed Air-Bearing-Based Attitude Simulator for CubeSat Satellites</big>
 
!<big>3-D Printed Air-Bearing-Based Attitude Simulator for CubeSat Satellites</big>
 
|-
 
|-
|<center>{{#widget:YouTube|id=1gN0IHUx6yE}} </center>
+
|<center>{{#widget:YouTube|id=https://youtu.be/p265-RkLPEc}} </center>
 
|-
 
|-
 
|}
 
|}
 +
  
 
==Abstract==
 
==Abstract==

Revision as of 12:27, 14 October 2019


Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Currently looking for PhD or MSC student interested in solar energy policy- apply now!
Contact Dr. Joshua Pearce - Apply here

MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, Instagram, YouTube

OSL.jpg


Pearce Publications: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education


Source

3-D Printed Air-Bearing-Based Attitude Simulator Actuation
3-D Printed Air-Bearing-Based Attitude Simulator for CubeSat Satellites


Abstract

With the surge of interest in nano-satellites, there is a concomitant need for high quality, yet affordable simulation and testing environments. It is particularly challenging to experimentally evaluate nano-satellite attitude control systems in a test environment. This article investigates the technical feasibility of fabricating a low-cost air-bearing platform with three degrees of freedom of angular motion using desktop 3-D printing technology with limited printing resolution. An open source air-bearing attitude simulator for complete 1U CubeSat is proposed, manufactured, and characterized. The platform is equipped with directional air nozzles that enable external torque generation in order to cancel out i) parasitic moments of inertia from the satellite’s enclosure and ii) error torque produced by imperfections. It is also capable of simulating disturbances in a space environment. The results show that the torques produced by the nozzles can reach beyond 0.001 Nm and are sufficient to remove error torques and provide torque compensation of the orders of 0.0004 Nm. Removing the effects of gravity torque with the nozzles proved to be unachievable with the current design, requiring precise positioning of the CubeSat within the enclosure. Future work has been identified for a number of improvements to the design and details for the further development of the platform.


Status
This OSAT has been designed but not yet tested - use at own risk.
This OSAT has been modeled.
This OSAT has been prototyped.
This OSAT has been verified by: Aalto University.

You can help Appropedia by contributing to the next step in this OSAT's status.


Keywords

open source hardware; open hardware; 3-D printing; additive manufacturing; CubeSat; Air bearing; Aerostatic; Attitude simulator; SpaceCraft Simulator


See Also