Line 24: Line 24:
* [[Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography]]
* [[Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography]]
* [[Fabricating Ordered 2-D Nano-Structured Arrays Using Nanosphere Lithography]]
* [[Fabricating Ordered 2-D Nano-Structured Arrays Using Nanosphere Lithography]]
 
* [[Scalable honeycomb top contact to increase the light absorption and reduce the series resistance of thin film solar cells]]


{{Solar navbox}}
{{Solar navbox}}

Revision as of 00:56, 20 December 2018

Spie-plasmonic.jpg

Source

Abstract

Metals in the plasmonic metamaterial absorbers for photovoltaics constitute undesired resistive heating. However, tailoring the geometric skin depth of metals can minimize resistive losses while maximizing the optical absorbance in the active semiconductors of the photovoltaic device. Considering experimental permittivity data for InxGa1-xN, absorbance in the semiconductor layers of the photovoltaic device can reach above 90%. The results here also provides guidance to compare the performance of different semiconductor materials. This skin depth engineering approach can also be applied to other optoelectronic devices, where optimizing the device performance demands minimizing resistive losses and power consumption, such as photodetectors, laser diodes, and light emitting diodes.


Keywords

Absorption ; Metamaterials ; Solar cells ; Semiconductors ; Skin ; Absorbance ; Metals ; Engineering ; Light emitting diodes ; Optoelectronic devices

See Also

Cookies help us deliver our services. By using our services, you agree to our use of cookies.