({{Solar navbox}})
m (recat)
Line 79: Line 79:
{{Solar navbox}}
{{Solar navbox}}


[[Category:Solar energy]]
[[Category:Solar power]]

Revision as of 17:55, 18 July 2011

What is Concentrated Solar?

Concentrated solar takes the sun’s energy and collects it through a series of arrays and then concentrates or focuses it on a location that is the center of the arrays. The energy at that central point becomes very hot, hot enough to melt many metals and to produce steam.

Concentrator Designs:

Solar concentrator technologies comes in several forms:

  • Power towers - are designed for large scale centralized grid applications. They are only a few prototypes in operation and they use parabolic mirrors to reflect the sun's radiation and then focus it on the power tower which is located in the center of the reflectors and elevated above the ground.
  • Dish Solar Concentrators - are a smaller version of a power tower. A mirror array concentrates the sun's energy on the center of the concentrator. In the SES and SAIC systems this is where the gen-set or power generator is located. Their power range varies in relation to the size of the concentrator array but the SES/SAIC system generator about 20-40 kwh about enough to power 4-6 homes.
  • Solar Troughs - Usually designed as part of a large scale centralized power system, however they do not rely on a centralized focus point as does the power tower and can be used for smaller scale applications.
  • High-Flux Solar Furnace - Involves the concentration of to many times the normal intensity of the sun at the Earth's surface, creating very high temperatures enabling the molding of metals using energy directly from the sun.

What are its advantages and disadvantages of this technology as compared to Solar PV?

Solar PV is expensive and one reason it is expensive compared to other energy sources like oil is that you need a lot of PV panels that take up a lot of area to produce a certain amount of electricity. Concentrated solar though requires a much small footprint because it operates at a higher level of efficiency converting more of the sun per unit of collector into energy. However it is still not known for sure whether the cost of this technology will be competitive with PV solar much less petroleum or natural gas because this technology is still in the experimental stages. At the present time there is no capacity to mass produce the parts needed to make the SES solar concentrators so they are expensive to make. SES of course believes that once they have developed an economy of scale the cost will of constructing these arrays will go down dramatically.

The two major companies developing concentrating solar technology have used External combusion engines as the gen-set. However the versatility of the dish solar system allows for different gen-sets to be installed. The Nevada 1MW Solar Dish Engine Project too place at a UNLV test facility. Two dish solar competitiors SAIC and SES were evaluated against each other. SES seemed to produce more power and performed well overall. However what was interesting was the concentrated solar/PV that was created with the use of triple junction solar cells. This hybrid has the potential to significantly increase cell capacity therefore dramatically improving power yield from cells reducing the number of cells needed to produce electricity. This though is still an experimental technology. Other possibilities involve the use of thermal-electric coupling or steam turbines.

Application Areas:

Large scale solar development for centralized power solutions as SES proposes with its 1000 MW stirling generator facility is one option towards a renewable energy economy.

Focus on decentralized, community based solutions that fits with our Village Economy model.

The Solar Power Village technology does fit this model and it also offers low-cost sterling engine solutions rather than high cost solutions put forward by SES. However SES's system may be more geared to produce electricity for sale to utilities than the Solar Power Village System. In one test performed by UNLV's solar research program SES's concentrator system outperformed SAIC's.

Background

Abstract

You can put an abstract here.

Keywords:

Development needs

Next steps

The most appropriate technology approaches are those focused on Distributed Power and/or District Power solutions and this primarily includes Dish and Trough solar Thermal systems. These systems are versatile, in that they can be used both in what are called distributed decentralized power systems and centralized, grid based or stand alone (off grid) applications (like the way most is generated today in large power plants at centralized locations.

Possible alternatives devices

Location

References

See Help:Footnotes for more.

---

Merged from Concentrated Solar Power - needs to be integrated

Introduction

Concentrated Solar Power (CSP) comes in a variety of sizes. Most notable are the large installations of heliostats (mirrors), which track the Sun and reflect the radiant energy to a receiver on a tall tower. A very few smaller systems use Fresnel lenses or parabolic reflectors to concentrate the solar thermal energy. There are a lot of advantages of solar power

Solar Furnace CHP System

SUMMARY SOLAR FURNACE CHP SYSTEM By MUTUAL AID SOCIETY OF AMERICA, INC. A Kentucky Non-profit corporation

Over the next 5 billions years before the Sun begins to dim, it will produce unfathomable amounts of solar energy. A tiny fraction of that solar energy will reach the surface of the Earth. Yet, this tiny fraction is enough to supply all of the energy needs, properly harnessed and distributed, to sustain our growing global population in a pollution-free environment. How is this possible​​? (read on) and is it probable? (Yes) Consider that the solar energy is responsible for plant growth, wind, waves, hydro-electric power, river power and direct conversion to electricity and for direct heat.


A Solar Furnace CHP System consists of three major elements: A solar energy collector on a Sun tracker electro-mechanical system, a Thermal Energy Battery (sometimes call TES or Thermal Energy Storage), and an application, such as an absorption unit which can produce rotational horsepower. There are many other applications for industrial and human use of the latent heat stored in the TEB/TES. Here's the problems the Solar Furnace CHP System has solved (on paper): Matching load to supply. The storage of a hot liquid in the TEB, greatly in excess of the anticipated load over time, will allow for uninterrupted use by the applications. Critical backup should always be provided such as for hospitals, communication centers and other essential services. The TEB can provide most of that backup, since heat can be generated and parsed into the TEB from a variety of sources (electric heat, liquid fueled heaters, geothermal heat, heat from biomass combustion). The supply of heat from the TEB allows for matching to a variable load. “Free” energy. The use of solar radiance to heat the transfer liquid is the lowest cost source of energy, even considering the amortization of equipment and operational expenses. Distributed energy. The primary benefit is derived from the ability to size a system for a wide variety of different applications, loads, and locations. The Solar Furnace CHP System's electrical generation can operate in stand-alone mode or networked locally or nationally. A significant savings of energy lost over the transmission lines, due to heat radiation, can be realized by locating many smaller plants at the point of application and the avoidance of huge, centralized facilities.


Low cost. The low cost of the Solar Furnace CHP System relative to large central plants, makes the unit affordable by a much larger customer base. KISS. The technology is simple and units are easy to construct and operate from standard plans, thus affording small businesses and DIY'ers to build their systems using mostly off-the-shelf materials and supplies. The applications, such as absorption power units are commercially available on a “plug-and-play” basis. Heat can be used to provide electricity, hot air, hot water and steam for heating buildings, cooling and refrigeration, and for growing crops, such as greenhouses.


Heat collection, storage and transfer. The use of a heat transfer liquid allows for two levels of heat. The collectors will be able, on a sunny day, to heat the liquid up to 600 degrees F. This liquid will be pumped to the TEB which is a large tank, heavily insulated and containing two heat exchangers. This tank can be made of many different materials, including temperature resistant concrete, ceramics, steel, aluminum, and other metals. The insulation will consist of a closed cell foam, made from soy, applied to the outside of the tank. The heat exchanger will be metal plate exchangers. Should one of the leaves of a plate exchanger fail, that exchanger can be unbolted and the failed plate replaced.


The tank takes its input from the solar collectors at the maximum temperature (not to exceed 600 degrees F), which incoming liquid heats the liquid in the TEB. A plate heat exchanger then parses that heat to the application. In doing so, the temperature of the liquid leaving the exchanger is regulated by a mixing valve which mixes the returning, colder fluid, with the outgoing hotter fluid, able to maintain the target temperature used by the application. Such mixing values are commercially available and can be linked to computer controls and remote sensors, switches, pumps and valves.


These units will be marketed to farms, greenhouse operations, dairies, food processing and packaging plants, industrial plants and institutions which can accommodate the Sun Collectors and tracker system. The anticipated payback time will be between two and ten years, depending on the applications employed. The proposed management and technology team includes mechanical engineering, agricultural engineering, optical engineering, patent agent, attorney, sales and marketing staff, and general management talent. Mutual Aid Society of America, Inc. (MASA), is newly formed and will apply for a 501.c.3 ruling from IRS. The patent agent will pursue a patent for the Solar Collector, Sun tracker system and the Thermal Energy Battery. Licenses will be offered to qualifying 501.c.3 organizations which serve poor communities with basic needs, at no or low royalties. Generally, for-profit entities will pay a royalty of one percent of the average value of energy used by its applications, based on current market rates for commercial energy displaced by the solar energy. MASA will be operated as a worker cooperative, with the profits being used to push the technical envelopes and to subsidize other start-up worker cooperatives which use and/or sell the Solar Furnace CHP System.


Contact information: 
Jim Miller, President 
Mutual Aid Society of America, Inc. 
103 Methodist St., Cecilia, KY 42724 
Ph and Fax: 270-862-4379 
Email: jimmiller5417@yahoo.com 
Web: http://algaloildiesel.wetpaint.com and http://masallp.wetpaint.com 
Cookies help us deliver our services. By using our services, you agree to our use of cookies.