No edit summary
No edit summary
 
(41 intermediate revisions by 11 users not shown)
Line 1: Line 1:
==Background==
[[File:MEOW V2 Complete Small.jpg|thumb|MEOW V2]]


{{Project data
| authors = User:Ncr18
| status = Deployed
| completed = 2012
| made = Yes
| uses = Transport
| location = Arcata, California
| instance-of = Photovoltaic device
}}


In December 2010, CCAT lent their Mobile Energy Operations Wagon [http://www.appropedia.org/CCAT_MEOW (MEOW) V1] to a local eco-hostel. While away from the CCAT house, the MEOW V1 was not properly locked and stowed at night and the 720 W photovoltaic (PV) trailer was subsequently stolen and vandalized. Some days after the burglary, CCAT received a call from the local police who said they had found the MEOW V1 abandoned on the side of a nearby highway. It turns out that the vandals had broken the hitch lock, attached the trailer to their own vehicle, and drove it miles away where they could remove all the components of value (i.e. the 720 W array, batteries, charge controller, and inverter) in a less conspicuous area. After the vandals stripped the trailer of all high-value components, they covered the trailer with a patchy coat of black spray paint to make it seem as though the trailer had been deserted by its owner (Fig 1)[[File:Hideous MEOW.jpg|thumb|Fig 1: The MEOW V1 returned to CCAT's driveway after system theft]]. The MEOW V1 had been one of CCAT's most effective tools used to disseminate knowledge of renewable energy and appropriate technology to students and community members. The theft of the MEOW V1 was a disappointing, but not a devastating blow to the employees and volunteers of CCAT. It took nearly 18 months of hard work spent designing, fund raising, building, and repairing, but the CCAT house was finally able to get their beloved MEOW purring again. So was born, the MEOW V2 *ADD PHOTO*.
{{Subpages menu}}


This page describes the development progress and the history of the Campus Center for Appropriate Technology's [http://www.ccathsu.com/ (CCAT's)] Mobile Energy Operations Wagon (MEOW). Specifically, this page describes the work that took place on the second version of the trailer (MEOW V2) after the first version was stolen in 2010.


==Funding the MEOW V2==
== Background ==


CCAT operates on a very limited budget (roughly $6,000/year for ALL projects). The most difficult task of bringing the PV trailer back to life, by far, was acquiring funding for the new components (i.e. PV modules, inverter etc.). After two rejected proposals to the Humboldt Energy Independence Fund [http://www.appropedia.org/Humboldt_Energy_Independence_Fund_(HEIF) (HEIF)] committee and many phone calls/emails to community members and local solar companies, it was David Katz of AEE Solar who was the most helpful at getting us what we needed. David donated four REC 230 W panels as well as his personal Outback GVFX48 inverter to CCAT. For the remaining components, David put us in contact with the Trojan Battery Company and Outback Power Systems from whom we were able to procure a battery bank at cost and a refurbished charge controller at no cost, respectively. We at CCAT would like to extend a hearty thank you to David Katz of AEE Solar, Outback Power Systems, and The Trojan Battery Company, for without their support, this project would not have been possible.  
In December 2010, CCAT lent their [[CCAT MEOW|Mobile Energy Operations Wagon (MEOW) V1]] to a local eco-hostel. While away from the CCAT house, the 720 W photovoltaic (PV) trailer was stolen and vandalized. Some days after the burglary, CCAT received a call from the local police who said they had found the MEOW V1 abandoned on the side of a nearby highway. It turns out that the vandals had broken the hitch lock, attached the trailer to their own vehicle, and drove it miles away where they could remove all the components of value (i.e. the 720 W array, batteries, charge controller, and inverter) in a less conspicuous area. After the vandals stripped the trailer of all high-value components, they covered the trailer with a patchy coat of black spray paint to make it seem as though the trailer had been deserted by its owner (Fig 1)[[File:Hideous MEOW.jpg|thumb|Fig 1: The MEOW V1 returned to CCAT's driveway after system theft]]. The MEOW V1 had been one of CCAT's most effective tools used to disseminate knowledge of renewable energy and appropriate technology to students and community members. The theft of the MEOW V1 was a disappointing, but not a devastating, blow to the employees and volunteers of CCAT. It took nearly 18 months of hard work spent designing, fund raising, building, and repairing, but the CCAT house was finally able to get their beloved MEOW purring again. So was born, the MEOW V2 (Top Photo).


== Funding the MEOW V2 ==


==MEOW V1 vs. MEOW V2: The Advantages and Disadvantages==
CCAT operates on a very limited budget (roughly $6,000/year for ALL projects). The most difficult task of bringing the PV trailer back to life, by far, was acquiring funding for the new components(e.g., PV modules, inverter, etc.). After two rejected proposals to the Humboldt Energy Independence Fund [[Humboldt Energy Independence Fund (HEIF)|(HEIF)]] committee and many phone calls/emails to community members and local solar companies, it was David Katz of AEE Solar who was the most helpful at getting us what we needed. David donated four REC 230 W panels as well as his personal Outback GVFX48 inverter to CCAT. For the remaining components, David put us in contact with the Trojan Battery Company and Outback Power Systems from whom we were able to procure a battery bank at cost and a refurbished charge controller at no cost, respectively. We at CCAT would like to extend a hearty thank you to David Katz of AEE Solar, Outback Power Systems, and The Trojan Battery Company, for without their support, this project would not have been possible.


== MEOW V1 vs. MEOW V2: The Advantages and Disadvantages ==


The components for the MEOW V2 that we received from our donors have several advantages and disadvantages from those of the MEOW V1. For starters, an advantage of the MEOW V2 is that the new PV array has a slightly higher wattage (920 W as apposed to 720 W), which allows us to harness more of the sun’s energy. The second (and probably most significant) advantage is that the new Outback GVFX48 can operate in both off-grid and on-grid applications. Technically speaking, this inverter can be programed to divert any excess electricity to the utility grid when no primary load is detected. What this capability means is that when the MEOW V2 is parked in CCAT’s driveway, the system can inject electricity into the PG&E grid and based on our existing net metering contract, CCAT (Associated Students) will receive a certain dollar amount per kWh that MEOW V2 produces. This feature is an obvious improvement since a [http://www.appropedia.org/CCAT_Mobile_Energy_Operations_Wagon_(MEOW)_energy_analysis key issue identified] with the previous MEOW was that the available electricity was not put to any useful function when the trailer was parked in CCAT’s driveway (which was most of the time); the Outback GVFX 48 solves this problem.  
The components for the MEOW V2 that we received from our donors have several advantages and disadvantages from those of the MEOW V1. For starters, an advantage of the MEOW V2 is that the new PV array has a slightly higher wattage (920 W as apposed to 720 W), which allows us to harness more of the sun's energy. The second (and probably most significant) advantage is that the new Outback GVFX48 can operate in both off-grid and on-grid applications. Technically speaking, this inverter can be programed to divert any excess electricity to the utility grid when no primary load is detected. What this capability means is that when the MEOW V2 is parked in CCAT's driveway, the system can inject electricity into the PG&E grid and based on our existing net metering contract, CCAT (Associated Students) will receive a certain dollar amount per kWh that MEOW V2 produces. This feature is an obvious improvement since a [[CCAT Mobile Energy Operations Wagon (MEOW) energy analysis|key issue identified]] with the previous MEOW was that the available electricity was not put to any useful function when the trailer was parked in CCAT's driveway (which was most of the time); the Outback GVFX 48 solves this problem.


A disadvantage of the MEOW V2 is the amp-hour (aH) capacity of the new battery bank. Due to CCAT’s budget, we were only able to acquire a 48 V, 102 aH battery bank (i.e. four 12 V, 102 aH (C-20) GEL cell batteries). This set-up will provide roughly 25% of the energy, or autonomous run-time (ART), that the MEOW V1 provided. However, when CCAT finds new funds, the MEOW V2’s aH capacity can always be increased with sets of four 12V batteries placed in parallel with the existing battery bank. An advantage to the new Trojan GEL batteries is that they are maintenance free as opposed to the previous sealed led acid (SLA) batteries, which required employees to frequently monitor the electrolyte levels. Furthermore, there was always a risk that the sulfuric acid inside the SLA batteries would spill when the trailer was being towed. This is no longer a risk with the sealed GEL batteries.
A disadvantage of the MEOW V2 is the amp-hour (aH) capacity of the new battery bank. Due to CCAT's budget, we were only able to acquire a 48 V, 102 aH battery bank (i.e. four 12 V, 102 aH (C-20) GEL cell batteries). This set-up will provide roughly 25% of the energy, or autonomous run-time (ART), that the MEOW V1 provided. However, when CCAT finds new funds, the MEOW V2's aH capacity can always be increased with sets of four 12V batteries placed in parallel with the existing battery bank. An advantage to the new Trojan GEL batteries is that they are maintenance free as opposed to the previous sealed led acid (SLA) batteries, which required employees to frequently monitor the electrolyte levels. Furthermore, there was always a risk that the sulfuric acid inside the SLA batteries would spill when the trailer was being towed. This is no longer a risk with the sealed GEL batteries.


A list of the component specifications for the MEOW V1 and MEOW V2 are given in the Table below.
A list of the component specifications for the MEOW V1 and MEOW V2 are given in the Table below.


{| class="wikitable"
{| class="wikitable"
|-
! Component
! Component
! MEOW V1  
! MEOW V1
! Qty.  
! Qty.
(MV1)
(MV1)
! MEOW V2  
! MEOW V2
! Qty.  
! Qty.
(MV2)
(MV2)
|-
|-
Line 42: Line 52:
| 4
| 4
|-
|-
| Inverter  
| Inverter
| Trace 4024
| Trace 4024
| 1
| 1
Line 55: Line 65:
|}
|}


== The Reconstruction Process ==


==The Reconstruction Process==
This section summarizes the main tasks that were performed to get the MEOW running after the theft.
 
This section summarizes the main tasks that were performed to get the MEOW running after the theft.


===Interior and Exterior Cosmetic Fixes===
=== Interior and Exterior Cosmetic Fixes ===


The theft and vandalism left our beloved trailer looking like a hideous piece of rotting garbage, so the first task the CCAT family worked on was getting a fresh coat of paint on the MEOW (ADD PHOTO). Once the exterior was made presentable we proceeded to renovate the interior. The vandals had completely sawed of the system hardware panel where the previous inverter, charge controller, and battery monitor were mounted; we constructed a new system panel and maintained a compassionate attitude toward the thieves as we worked (*ADD PHOTO*).  
The theft and vandalism left our beloved trailer looking like a hideous piece of rotting garbage, so the first task the CCAT family worked on was getting a fresh coat of paint on the MEOW. Once the exterior was made presentable we proceeded to renovate the interior. The vandals had completely sawed of the system hardware panel where the previous inverter, charge controller, and battery monitor were mounted; we constructed a new system panel and maintained a compassionate attitude toward the thieves as we worked (Fig 2a and Fig 2b).


<center>
<gallery>
<gallery>
Image:MEOW_V2_Paint_Job.jpg|Fig 2: Sean Armstrong and his kids having fun repainting
Image:CCAT_MEOW_hardware.jpg|Fig 2: The previous hardware panel (2005).
Image:CCAT_MEOW_hardware.jpg|Fig 2a: The previous hardware panel (2005)
Image:MEOW New Hardware Construction.jpg|Fig 2a: The CCAT Crew mounting the new components.
Image:MEOW New Hardware Construction.jpg|Fig 2b: CCAT Crew mounting the new components
Image:MEOW New Panel.jpg|Fig 2b: New batteries, inverter, and charge controller successfully mounted (2012).
Image:MEOW New Panel.jpg|Fig 2c: New batteries, inverter, and charge controller successfully mounted (2012)
</gallery></center>
</gallery>


===The PV Rack===
=== The PV Rack ===


The PV rack turned out to be one of the most difficult components to rebuild. Although the bandits did not take the PV rack, in their mad dash efforts to remove and steal our valuable PV panels, they did manage to leave the rack system horribly mangled and more-or-less useless to us. Due to a lack of mechanical and structural expertise, our preliminary designs for the new rack weren’t fully functional (each panel weighs roughly 40 lbs. and must be able to safely travel down the highway at speeds of 65 mph; headwinds encountered on the highway must also be considered). In the name of safety and a long lasting system, we decided to work with local professional John Davis at Solar Racks to build the new PV rack. For John’s efforts, we traded him a couple of 60 W monocrystaline PV panels that had been lying around the CCAT house and had not been put to use in some years; because we are a worthy NGO, John also gave us a good deal on materials. By working with John we were able to give several students the opportunity to work in a metal working shop and receive hands-on experience with building solar racks (*ADD PHOTOS*).
The PV rack turned out to be one of the most difficult components to rebuild. Although the bandits did not take the PV rack, in their mad dash efforts to remove and steal our valuable PV panels, they did manage to leave the rack system horribly mangled and more-or-less useless to us. Due to a lack of mechanical and structural expertise, our preliminary designs for the new rack weren't fully functional (each panel weighs roughly 40 lbs. and must be able to safely travel down the highway at speeds of 65 mph; headwinds encountered on the highway must also be considered). In the name of safety and a long lasting system, we decided to work with local professional John Davis at Solar Racks to build the new PV rack. For John's efforts, we traded him a couple of 60 W monocrystaline PV panels that had been lying around the CCAT house and had not been put to use in some years; because we are a worthy NGO, John also gave us a good deal on materials. By working with John we were able to give several students the opportunity to work in a metal working shop and receive hands-on experience with building solar racks (Fig 3 - 3b).
 
The final design for the rack was a stationary flat-mount (i.e. 0° tilt) rack. This design was ultimately chosen for three reasons. The first reason is that a flat mount simplified the design and minimized materials cost. Second, we figured that a flat-mount rack would be much safer than a tilted or adjustable rack for the mobile system. The logic here was that if we were to make an adjustable rack, we would run the risk of someone accidentally leaving it 45 degrees during transport (which is likely since CCAT has a very high turn around rate of employees who don’t always know the finer details of how the systems at CCAT work). Additionally, the rope and pulley system used for the adjustable rack on the MEOW V1 was not devoid of problems: the rack required the careful attention of two people to raise and lower the panels and the rack [http://www.appropedia.org/CCAT_MEOW_rack reportedly bowed at critical points]. The third reason we went with the flat mount is that our analysis showed we would only lose 59 kWh/year (6%) in energy production as opposed to a tilted rack system (41°), and would lose 116 kWh/year (12%) with an adjustable rack. We decided the risks and costs of a tilted/adjustable rack didn’t outweigh the benefit of the additional 6%/12% electricity we would receive.
 
===Wiring the System===
 
Because CCAT is mainly a teaching and demonstration facility, we decided to take the reconstruction process as an opportunity to give a free PV system wiring workshop to HSU students and community members. The workshop was led by the Arcata based solar company Roger and His Band of Merry Solar Installers (*ADD PHOTOS*). Held over two separate weekends, the workshop series was very successful where over 20 participants learned the basics of PV wiring and left with the satisfaction of contributing to a fully functional solar system!
 
The four panels of the array were all wired in series (i.e. four series with one parallel string). This configuration simplified the wiring process and made the system safer by allowing less DC current to pass through the lines. Initially, we had some concern that the 150 V limit of the charge controller would be surpassed in an all series configuration. If all four panels were to be simultaneously open-circuited the system voltage would total 147 V (36.8 V x 4 panels); if one considers a safety factor of 1.25 (representing a cold morning with full sun) the system voltage could spike to 184 V and possibly fry the charge controller. However, after consulting with Roger and his professional team, they informed us that this situation is highly unlikely due to the flat (0°) tilt of the array, the local solar resource, and shading profile at the CCAT house.
 
The four 12V GEL batteries were all wired in series to create the necessary 48 V input that the GVFX48 requires to turn on. We installed all the necessary breakers inside the convenient Outback PS1 combiner box to protect each component from overload current (between the PV panels and charge controller, between the charge controller and batteries, and between the batteries and inverter).
 
As of November 2012, the MEOW V2 has only been wired for off-grid operation. The task of connecting the MEOW V2 to the grid still remains. The full energy producing capabilities of the system cannot be realized until this is done. Another task that remains to be done is to re-wire the bicycle dynamos (trickle chargers) that were connected to the MEOW V1 battery bank to the new system.  
 
==Estimated Energy Production==


<center>
<gallery>
Image:MEOW Rack Jerome.jpg|Fig 3: Jerome (HSU student) filing one of the beams in John's shop.
Image:MEOW Rack Dustin.jpg|Fig 3a: Dustin (HSU student) doing some precision metal cutting.
Image:MEOW Rack Jess.jpg|Fig 3b: Jess (HSU student) making sure it will all fit together.
</gallery></center>


The Table below shows the monthly and annual estimates for the amount of electricity (kWh) the MEOW V2 is capable of producing. The calculations use [http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/redbook/sum2/24283.txt NREL data] for the solar resource in Arcata, CA at a horizontal tilt (2nd column) and the monthly shading profile in the CCAT driveway according to a solar path finder reading (3rd column). The calculations are for the 920 W, flat-mount (i.e. 0°) array and consider a total system efficiency of 85% (93% for the inverter, 95% for the batteries, and 96% for wire losses and module soiling). The calculations estimate that the MEOW will produce roughly 870 kWh/year, which could change based on how often the trailer is moved from the CCAT driveway as well as the depth of discharge (DOD) that the batteries are cycled to. 
The final design for the rack was a stationary flat-mount (i.e. tilt) rack (Fig 4a). This design was ultimately chosen for three reasons. The first reason is that a flat mount simplified the design and minimized materials cost. Second, we figured that a flat-mount rack would be much safer than a tilted or adjustable rack for the mobile system. The logic here was that if we were to make an adjustable rack, we would run the risk of someone accidentally leaving it 45 degrees during transport (which is likely since CCAT has a very high turn around rate of employees who don't always know the finer details of h
 
{| class="wikitable"
|-
! Month
! Solar Resource
(kWh/m<sup>2</sup>/day)
! % Resource
Available
! Energy Production
(kWh/day)
! Energy Production
(kWh/month)
|-
| Jan
| 1.8
| 63%
| 0.9
| 27.4
|-
| Feb
| 2.5
| 64%
| 1.3
| 35.0
|-
| Mar
| 3.6
| 54%
| 1.5
| 47.0
|-
| Apr
| 5.0
| 81%
| 3.2
| 94.8
|-
| May
| 5.8
| 95%
| 4.3
| 133.3
|-
| Jun
| 6.0
| 95%
| 4.4
| 135.6
|-
| Jul
| 5.9
| 95%
| 4.4
| 135.6
|-
| Aug
| 5.0
| 93%
| 3.6
| 108.9
|-
| Sep
| 4.4
| 53%
| 1.8
| 56.4
|-
| Oct
| 3.1
| 62%
| 1.5
| 46.5
|-
| Nov
| 2.0
| 58%
| 0.9
| 27.2
|-
| Dec
| 1.6
| 66%
| 0.8
| 25.6
|-
| Annual
| 3.9
| 73%
| NA
| '''871.3'''
|}

Latest revision as of 08:12, 14 September 2022

MEOW V2
FA info icon.svg Angle down icon.svg Project data
Authors Ncr18
Location Arcata, California
Status Deployed
Completed 2012
Made Yes
Uses Transport
Instance of Photovoltaic device
OKH Manifest Download

This page describes the development progress and the history of the Campus Center for Appropriate Technology's (CCAT's) Mobile Energy Operations Wagon (MEOW). Specifically, this page describes the work that took place on the second version of the trailer (MEOW V2) after the first version was stolen in 2010.

Background[edit | edit source]

In December 2010, CCAT lent their Mobile Energy Operations Wagon (MEOW) V1 to a local eco-hostel. While away from the CCAT house, the 720 W photovoltaic (PV) trailer was stolen and vandalized. Some days after the burglary, CCAT received a call from the local police who said they had found the MEOW V1 abandoned on the side of a nearby highway. It turns out that the vandals had broken the hitch lock, attached the trailer to their own vehicle, and drove it miles away where they could remove all the components of value (i.e. the 720 W array, batteries, charge controller, and inverter) in a less conspicuous area. After the vandals stripped the trailer of all high-value components, they covered the trailer with a patchy coat of black spray paint to make it seem as though the trailer had been deserted by its owner (Fig 1)

Fig 1: The MEOW V1 returned to CCAT's driveway after system theft

. The MEOW V1 had been one of CCAT's most effective tools used to disseminate knowledge of renewable energy and appropriate technology to students and community members. The theft of the MEOW V1 was a disappointing, but not a devastating, blow to the employees and volunteers of CCAT. It took nearly 18 months of hard work spent designing, fund raising, building, and repairing, but the CCAT house was finally able to get their beloved MEOW purring again. So was born, the MEOW V2 (Top Photo).

Funding the MEOW V2[edit | edit source]

CCAT operates on a very limited budget (roughly $6,000/year for ALL projects). The most difficult task of bringing the PV trailer back to life, by far, was acquiring funding for the new components(e.g., PV modules, inverter, etc.). After two rejected proposals to the Humboldt Energy Independence Fund (HEIF) committee and many phone calls/emails to community members and local solar companies, it was David Katz of AEE Solar who was the most helpful at getting us what we needed. David donated four REC 230 W panels as well as his personal Outback GVFX48 inverter to CCAT. For the remaining components, David put us in contact with the Trojan Battery Company and Outback Power Systems from whom we were able to procure a battery bank at cost and a refurbished charge controller at no cost, respectively. We at CCAT would like to extend a hearty thank you to David Katz of AEE Solar, Outback Power Systems, and The Trojan Battery Company, for without their support, this project would not have been possible.

MEOW V1 vs. MEOW V2: The Advantages and Disadvantages[edit | edit source]

The components for the MEOW V2 that we received from our donors have several advantages and disadvantages from those of the MEOW V1. For starters, an advantage of the MEOW V2 is that the new PV array has a slightly higher wattage (920 W as apposed to 720 W), which allows us to harness more of the sun's energy. The second (and probably most significant) advantage is that the new Outback GVFX48 can operate in both off-grid and on-grid applications. Technically speaking, this inverter can be programed to divert any excess electricity to the utility grid when no primary load is detected. What this capability means is that when the MEOW V2 is parked in CCAT's driveway, the system can inject electricity into the PG&E grid and based on our existing net metering contract, CCAT (Associated Students) will receive a certain dollar amount per kWh that MEOW V2 produces. This feature is an obvious improvement since a key issue identified with the previous MEOW was that the available electricity was not put to any useful function when the trailer was parked in CCAT's driveway (which was most of the time); the Outback GVFX 48 solves this problem.

A disadvantage of the MEOW V2 is the amp-hour (aH) capacity of the new battery bank. Due to CCAT's budget, we were only able to acquire a 48 V, 102 aH battery bank (i.e. four 12 V, 102 aH (C-20) GEL cell batteries). This set-up will provide roughly 25% of the energy, or autonomous run-time (ART), that the MEOW V1 provided. However, when CCAT finds new funds, the MEOW V2's aH capacity can always be increased with sets of four 12V batteries placed in parallel with the existing battery bank. An advantage to the new Trojan GEL batteries is that they are maintenance free as opposed to the previous sealed led acid (SLA) batteries, which required employees to frequently monitor the electrolyte levels. Furthermore, there was always a risk that the sulfuric acid inside the SLA batteries would spill when the trailer was being towed. This is no longer a risk with the sealed GEL batteries.

A list of the component specifications for the MEOW V1 and MEOW V2 are given in the Table below.

Component MEOW V1 Qty.

(MV1)

MEOW V2 Qty.

(MV2)

PV Modules Astropower 120 W 6 REC 230 W 4
Batteries Trojan L-16 (6V, 350aH) 8 Trojan 31-GEL (12V, 102aH) 4
Inverter Trace 4024 1 Outback GVFX 48 1
Charge Controller NA 1 Outback FM 80 1

The Reconstruction Process[edit | edit source]

This section summarizes the main tasks that were performed to get the MEOW running after the theft.

Interior and Exterior Cosmetic Fixes[edit | edit source]

The theft and vandalism left our beloved trailer looking like a hideous piece of rotting garbage, so the first task the CCAT family worked on was getting a fresh coat of paint on the MEOW. Once the exterior was made presentable we proceeded to renovate the interior. The vandals had completely sawed of the system hardware panel where the previous inverter, charge controller, and battery monitor were mounted; we constructed a new system panel and maintained a compassionate attitude toward the thieves as we worked (Fig 2a and Fig 2b).

The PV Rack[edit | edit source]

The PV rack turned out to be one of the most difficult components to rebuild. Although the bandits did not take the PV rack, in their mad dash efforts to remove and steal our valuable PV panels, they did manage to leave the rack system horribly mangled and more-or-less useless to us. Due to a lack of mechanical and structural expertise, our preliminary designs for the new rack weren't fully functional (each panel weighs roughly 40 lbs. and must be able to safely travel down the highway at speeds of 65 mph; headwinds encountered on the highway must also be considered). In the name of safety and a long lasting system, we decided to work with local professional John Davis at Solar Racks to build the new PV rack. For John's efforts, we traded him a couple of 60 W monocrystaline PV panels that had been lying around the CCAT house and had not been put to use in some years; because we are a worthy NGO, John also gave us a good deal on materials. By working with John we were able to give several students the opportunity to work in a metal working shop and receive hands-on experience with building solar racks (Fig 3 - 3b).

The final design for the rack was a stationary flat-mount (i.e. 0° tilt) rack (Fig 4a). This design was ultimately chosen for three reasons. The first reason is that a flat mount simplified the design and minimized materials cost. Second, we figured that a flat-mount rack would be much safer than a tilted or adjustable rack for the mobile system. The logic here was that if we were to make an adjustable rack, we would run the risk of someone accidentally leaving it 45 degrees during transport (which is likely since CCAT has a very high turn around rate of employees who don't always know the finer details of h

Cookies help us deliver our services. By using our services, you agree to our use of cookies.