This page describes selected literature available on Band gap Engineering for PV material optimization.

Analysis of thermoelectric characteristics of AlGaN and InGaN semiconductors[1]

Abstract: The thermoelectric properties of AlGaN and InGaN semiconductors are analyzed. In Author(s) analysis, the thermal conductivities, electrical conductivities, Seebeck coefficients, and figure of merits (Z*T) of AlGaN and InGaN semiconductors are computed. The electron transports in AlGaN and InGaN alloys are analyzed by solving Boltzmann transport equation, taking into account the dominant mechanisms of energy-dependent electron scatterings. Virtual crystal model is implemented to simulate the lattice thermal conductivity from phonon scattering for both AlGaN and InGaN alloys. The calculated Z*T is as high as 0.15 for optimized InGaN alloy at temperature around 1000 K. For optimized AlGaN composition, the Z*T of 0.06-0.07 can be achieved. The improved thermoelectric performance of ternary alloys over binary alloys can be attributed to the reduced lattice thermal conductivity.

High-efficiency multi-junction solar cells:Current status and future potential[2]

AlGaAs tunnel junction for high efficiency multi-junction solar cells: Simulation and measurement of[3]

Abstract
AlGaAs tunnel junctions are shown to be well-suited to concentrated photovoltaics where temperatures and current densities can be dramatically higher than for 1-sun flat-panel systems. Detailed comparisons of AlGaAs/AlGaAs tunnel junction experimental measurements over a range of temperatures expected during device operation in concentrator systems are presented. Experimental and simulation results are compared in an effort to decouple the tunnel junction from the overall multi-junction solar cell. The tunnel junction resistance is experimentally studied as a function of the temperature to determine its contribution to overall efficiency of the solar cell. The current-voltage behavior of the isolated TJ shows that as the temperature is increased from 25°C to 85°C, the resistance decreases from ~4.7×10-4 Ω∙cm2 to ~0.3×10-4 Ω∙cm2 for the operational range of a multi-junction solar cell under concentration.

Impact of spectral effects on the electrical parameters of multijunction amorphous silicon cells[4]

Abstract
The influence of spectral variation on the efficiency of single-, double- and triple-junction amorphous silicon cells has been investigated. The average photon energy (APE) proves to be a useful device-independent environmental parameter for quantifying the average hue of incident spectra. Single-junction devices increase in efficiency as light becomes blue shifted, because more of the incident spectrum lies within the absorption window and less in the redlinfra-red tail; this is denoted the primary spectral effect. Double- and triple-junction devices also exhibit a secondary spectral effect due to mismatch between the device structure and the incident spectrum. These both reach a maximum efficiency, which drops off as light is red or blue shifted. The effect is more pronounced for triple-junction than double-junction devices, as mismatch between junctions is statistically more likely.

Modeling the effect of varying spectra on multi junction A-SI solar cells[5]

Abstract
The performance of multijunction amorphous silicon cells has been investigated for outdoor solar spectral radiation, using long term measurement for existing data at CREST, Loughborough University. It is a further study of the solar system, destined to analyze the outdoor performance of the amorphous silicon cells. The short circuit current for each subcells have been modeled and implemented into a computer program to calculate the mismatched short circuit current of the whole device.

Japanese R&D Activities of High Efficiency III-V Compound Multi-Junction and Concentrator Solar Cells[6]

Abstract
This paper reviews Japanese R&D activities of III-V compound multi-junction (MJ) and concentrator solar cells. As a result of advanced technologies development for high efficiency cells and discovery of superior radiation-resistance of InGaP based materials, InGaP-based MJ solar cells have been commercialised for space use in Japan. A new world-record efficiency of 35.8% at 1 sun has been achieved with InGaP/GaAs/InGaAs 3-junction solar cell. MJ solar cells composing of multi-layers with different bandgap energies have the potential for achieving high conversion efficiencies of over 50% and are promising for space and terrestrial applications due to wide photo response. In order to solve the problems of difficulties in making high performance and stable tunnel junctions, a double hetero (DH) structure tunnel junction was found to be useful for preventing diffusion from the tunnel junction and improving the tunnel junction performance by the authors. An InGaP material instead of AlGaAs for the top cell was proposed by NREL. As a result of advanced technologies development for high efficiency cells and discovery of superior radiation-resistance of InGaP-based materials by the authors, InGaP-based MJ solar cells have been commercialised for space use even in Japan since 2002. Most recently, world-record efficiency (35.8%) at 1-sun AM1.5G has been realised with inverted epitaxial grown InGaP/GaAs/InGaAs 3-junction cells by Sharp. Since the concentrator modules have been demonstrated to produce roughly 1.7 to 2.6 times more energy per area per annum than the 14 % multicrystalline silicon modules in most cities in Japan, concentrator PV Photovoltaics) as the 3rd PV technologies in addition to the 1st crystalline Si PV and the 2nd thin-film PV technologies are expected to contribute to electricity cost reduction for widespread PV applications.

Low-dimensional Systems and Nanostructures - Multi-junction solar cells and novel structures for solar cell applications[7]

Abstract
The present status of R& D program for super-high e*ciency III–V compound multi-junction solar cells in the New Sunshine Project in Japan is presented. As a result of InGaP top cell material quality improvement, development of optically and electrically low-loss double-heterostructure InGaP tunnel junction, photon and carrier con5nements, and lattice matching between active cell layers and substrate, InGaP=InGaAs=Ge monolithic cascade 3-junction cells with an e*ciency of 31.7% at 1-sun AM1.5 and InGaP=GaAs==InGaAs mechanically stacked 3-junction cells with the highest (world-record) e*ciency of 33.3% at 1-sun AM1.5 have been realized. As an approach for low-cost and high-e*ciency cells, better radiation resistance of GaAs thin-5lm solar cells with novel structures fabricated on Si substrates has also been demonstrated. Novel structures such as Bragg re=ector and super-lattice structures are found to show a better initial cell performance and radiation resistance since those layers act as bu>er layers to reduce dislocations, and act as a back-surface 5eld and back-surface re=ector layers.

Multi-junction III–V solar cells: current status and future potential[8]

Abstract
Our recent R&D activities of III–V compound multi-junction (MJ) solar cells are presented. Conversion efficiency of InGaP/InGaAs/Ge has been improved up to 31–32% (AM1.5) as a result of technologies development such as double hetero-wide band-gap tunnel junction, InGaP–Ge hetero-face structure bottom cell, and precise lattice-matching of InGaAs middle cell to Ge substrate by adding indium into the conventional GaAs layer. For concentrator applications, grid structure has been designed in order to reduce the energy loss due to series resistance, and world-record efficiency InGaP/InGaAs/Ge 3-junction concentrator solar cell with an efficiency of 37.4% (AM1.5G, 200-suns) has been fabricated. In addition, we have also demonstrated high-efficiency and large-area (7000 cm2) concentrator InGaP/InGaAs/Ge 3-junction solar cell modules of an outdoor efficiency of 27% as a result of developing high-efficiency InGaP/InGaAs/Ge 3-junction cells, low optical loss Fresnel lens and homogenizers, and designing high thermal conductivity modules. Future prospects are also presented. We have proposed concentrator III–V compound MJ solar cells as the 3rd generation solar cells in addition to 1st generation crystalline Si solar cells and 2nd generation thin-film solar cells. We are now developing low-cost and high output power concentrator MJ solar cell modules with an output power of 400 W/m2 for terrestrial applications.

Novel materials for high-efficiency III–V multi-junction solar cells[9]

Abstract
As a result of developing wide bandgap InGaP double hetero structure tunnel junction for sub-cell interconnection, InGaAs middle cell lattice-matched to Ge substrate, and InGaP-Ge heteroface structure bottom cell, we have demonstrated 38.9% efficiency at 489-suns AM1.5 with InGaP/InGaP/Ge 3-junction solar cells by in-house measurements. In addition, as a result of developing a non-imaging Fresnel lens as primary optics, a glass-rod kaleidoscope homogenizer as secondary optics and heat conductive concentrator solar cell modules, we have demonstrated 28.9% efficiency with 550-suns concentrator cell modules with an area of 5445 cm2. In order to realize 40% and 50% efficiency, new approaches for novel materials and structures are being studied. We have obtained the following results: (1) improvements of lattice-mismatched InGaP/InGaAs/Ge 3-junction solar cell property as a result of dislocation density reduction by using thermal cycle annealing, (2) high quality (In)GaAsN material for 4- and 5-junction applications by chemical beam epitaxy, (3)11.27% efficiency InGaAsN single-junction cells, (4) 18.27% efficiency InGaAs/GaAs potentially modulated quantum well cells, and (5) 7.65% efficiency InAs quantum dot cells.

III–V compound multi-junction solar cells: present and future[10]

Abstract
As a result of top cell material quality improvement, development of optically and electrically low-loss double-hetero structure tunnel junction, photon and carrier confinements, and lattice-matching between active cell layers and substrate, the last 15 years have seen large improvements in III–V compound multi-junction (MJ) solar cells. In this paper, present status of R&D program for super-high-efficiency MJ cells in the New Sunshine Project in Japan is presented. InGaP/InGaAs/Ge monolithic cascade 3-junction cells with newly recorded efficiency of 31.7% at AM1.5 (1-sun) were achieved on Ge substrates, in addition to InGaP/GaAs//InGaAs mechanically stacked 3-junction cells with world-record efficiency of 33.3%. Future prospects for realizing super-high-efficiency and low-cost MJ solar cells are also discussed. r 2002 Published by Elsevier Science B.V.

Super high-efficiency multi-junction and concentrator solar cells[11]

Abstract
III–V compound multi-junction (MJ) (tandem) solar cells have the potential for achieving high conversion efficiencies of over 50% and are promising for space and terrestrial applications. We have proposed AlInP–InGaP double hetero (DH) structure top cell, wide-band gap InGaP DH structure tunnel junction for sub cell interconnection, and lattice-matched InGaAs middle cell. In 2004, we have successfully fabricated world-record efficiency concentrator InGaP/InGaAs/Ge 3-junction solar cells with an efficiency of 37.4% at 200-suns AM1.5 as a result of widening top cell band gap, current matching of sub cells, precise lattice matching of sub cell materials, proposal of InGaP–Ge heteroface bottom cell, and introduction of DH-structure tunnel junction. In addition, we have realized high-efficiency concentrator InGaP/InGaAs/Ge 3-junction solar cell modules (with area of 7000 cm2) with an out-door efficiency of 27% as a result of developing high-efficiency InGaP/InGaAs/Ge 3-junction cells, low optical loss Fresnel lens and homogenizers, and designing low thermal conductivity modules. Future prospects are also presented. We have proposed concentrator III–V compound MJ solar cells as the 3rd-generation solar cells in addition to 1st-generation crystalline Si solar cells and 2nd generation thin-film solar cells. We are now challenging to develop low-cost and high output power concentrator MJ solar cell modules with an output power of 400W/m2 for terrestrial applications and high-efficiency, light-weight and low-cost MJ solar cells for space applications.

Theoretical performance of multi-junction solar cells combining III-V and Si materials[12]

Abstract
A route to improving the overall efficiency of multi-junction solar cells employing conventional III-V and Si photovoltaic junctions is presented here. A simulation model was developed to consider the performance of several multi-junction solar cell structures in various multi-terminal configurations. For series connected, 2-terminal triple-junction solar cells, incorporating an AlGaAs top junction, a GaAs middle junction and either a Si or InGaAs bottom junction, it was found that the configuration with a Si bottom junction yielded a marginally higher one sun efficiency of 41.5% versus 41.3% for an InGaAs bottom junction. A significant efficiency gain of 1.8% over the two-terminal device can be achieved by providing an additional terminal to the Si bottom junction in a 3-junction mechanically stacked configuration. It is shown that the optimum performance can be achieved by employing a four-junction series-connected mechanically stacked device incorporating a Si subcell between top AlGaAs/GaAs and bottom In0.53Ga0.47As cells.

Progress and challenges for next-generation high-efficiency multijunction solar cells[13]

Abstract
Multijunction solar cells are the most efficient solar cells ever developed with demonstrated efficiencies above 40%, far in excess of the performance of any conventional single-junction cell. This paper describes paths toward next-generation multijunction cells with even higher performance. Starting from fundamental multijunction concepts, the paper describes the desired characteristics of semiconductor materials for multijunction cells; the corresponding challenges in obtaining these characteristics in actual materials; and materials and device architectures to overcome these challenges.

Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems[14]

Abstract
Future terrestrial concentrator cells will likely feature four or more junctions. The better division of the solar spectrum and the lower current densities in these new multijunction cells reduce the resistive power loss (I2R) and provide a significant advantage in achieving higher efficiencies of 45–50%. The component subcells of these concentrator cells will likely utilize new technology pathways such as highly metamorphic materials, inverted crystal growth, direct-wafer bonding, and their combinations to achieve the desired bandgaps while maintaining excellent device material quality for optimal solar energy conversion. Here, we report preliminary results of two technical approaches: (1) metamorphic ∼1 eV GaInAs subcells in conjunction with an inverted growth approach and (2) multijunction cells on wafer-bonded, layer-transferred epitaxial templates.

Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency[15]

Abstract
A spectral beam-splitting architecture is shown to provide an excellent basis for a four junction photovoltaic receiver with a virtually ideal band gap combination. Spectrally selective beam-splitters are used to create a very efficient light trap in form of a 45° parallelepiped. The light trap distributes incident radiation onto the different solar cells with an optical efficiency of more then 90%. Highly efficient solar cells including III–V semiconductors and silicon were fabricated and mounted into the light trapping assembly. An integrated characterization of such a receiver including the measurement of quantum efficiency as well as indoor and outdoor I–V measurements is shown. Moreover, the optical loss mechanisms and the optical efficiency of the spectral beam-splitting approach are discussed. The first experimental setup of the receiver demonstrated an outdoor efficiency of more than 34% under unconcentrated sunlight. Copyright © 2010 John Wiley & Sons, Ltd.

Fluctuations of the peak current of tunnel diodes in multi-junction solar cells [16]

Abstract
Interband tunnel diodes are widely used to electrically interconnect the individual subcells in multi-junction solar cells. Tunnel diodes have to operate at high current densities and low voltages, especially when used in concentrator solar cells. They represent one of the most critical elements of multi-junction solar cells and the fluctuations of the peak current in the diodes have an essential impact on the performance and reliability of the devices. Recently we have found that GaAs tunnel diodes exhibit extremely high peak currents that can be explained by resonant tunnelling through defects homogeneously distributed in the junction. Experiments evidence rather large fluctuations of the peak current in the diodes fabricated from the same wafer. It is a challenging task to clarify the reason for such large fluctuations in order to improve the performance of the multi-junction solar cells. In this work we show that the large fluctuations of the peak current in tunnel diodes can be caused by relatively small fluctuations of the dopant concentration. We also show that the fluctuations of the peak current become smaller for deeper energy levels of the defects responsible for the resonant tunnelling.

References

  1. H. Tong, H. Zhao, V. A. Handara, J. A. Herbsommer, and N. Tansu, “Analysis of thermoelectric characteristics of AlGaN and InGaN semiconductors,” Proceedings of SPIE, vol. 7211, no. 1, pp. 721103-721103-11, Feb. 2009
  2. Natalya V. Yastrebova, Centre for Research in Photonics, University of Ottawa, April 2007
  3. Jeffrey F. Wheeldon, Christopher E. Valdivia and Alex Walker, “AlGaAs TUNNEL JUNCTION FOR HIGH EFFICIENCY MULTI-JUNCTION SOLAR CELLS: SIMULATION AND MEASUREMENT OF TEMPERATURE-DEPENDENT OPERATION,”Conference publication of 2009 34th IEEE Photovoltaic specialists Conference (PVSC), pp. 000106 - 000111 , June 2009
  4. Betts, T.R. ,Jardine, C.N. , Gottschalg, R. , Infield, D.G. and Lane, K. “Impact of spectral effects on the electrical parameters of multijunction amorphous silicon cells,” Conference Publications of Photovoltaic Energy Conversion, vol. 2, p. 1756 - 1759, May 2003.
  5. Hanan Al Buflasa , Ralph Gottschalg and Tom Betts, “Modeling the effect of varying spectra on multi junction A-SI solar cells,” The Ninth Arab International Conference on Solar Energy, vol. 209, p. 78–85, April 2007.
  6. Masafumi Yamaguchi, “Japanese R&D Activities of High Efficiency III-V Compound Multi-Junction and Concentrator Solar Cells,” International Conference on Materials for Advanced Technologies 2011, vol. 15, pp. 265–274, 2012
  7. Masafumi Yamaguchi, “Low-dimensional Systems and Nanostructures - Multi-junction solar cells and novel structures for solar cell applications,” Proceedings of Physica E, vol. 14, pp. 84–90, April 2012
  8. Masafumi Yamaguchi,Tatsuya Takamoto,Kenji Araki and Nicholas Ekins-Daukes, “ Multi-junction III–V solar cells: current status and future potential,” Proceedings of Solar Energy, vol. 79, pp. 78–85, July 2005
  9. Masafumi Yamaguchi,Ken-Ichi Nishimura,Takuo Sasaki , Hidetoshi Suzuki and Kouji Arafune, “Novel materials for high-efficiency III–V multi-junction solar cells,” Proceedings of Solar Energy, vol. 82, pp. 173–180, Feb. 2008
  10. Masafumi Yamaguchi, “III–V compound multi-junction solar cells: present and future,” Proceedings of Solar Energy Materials and Solar Cells, vol. 72, pp. 261–269, Jan. 2003
  11. Masafumi Yamaguchi,Tatsuya Takamoto and Kenji Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Proceedings of Solar Energy Materials and Solar Cells, vol. 90, pp. 3068–3077, Nov. 2006
  12. Ian Mathews, Donagh O'Mahony, Brian Corbett, and Alan P. Morrison, “Theoretical performance of multi-junction solar cells combining III-V and Si materials,” Proceedings of Optics Express, Vol. 20, Issue S5, pp. A754-A764, 2012
  13. D.J. Friedman, “Progress and challenges for next-generation high-efficiency multijunction solar cells,” Curr.Opin. Solid St. M., Vol. 14, Issue 6, pp. 31–138, Dec.2010
  14. D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells, Vol. 94, Issue 8, pp. 1314–1318, August 2010
  15. B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett,and F. Dimroth, “Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl., Vol. 19, Issue 1, pp. 61–72, July 2010
  16. K. Jandieri, S. D. Baranovskii, W. Stolz, F. Gebhard, W. Guter, M. Hermle, and A. W. Bett, “Fluctuations of the peak current of tunnel diodes in multi-junction solar cells ,” J. Phys. D Appl. Phys., Vol. 42, Issue 15, pp. 155101, 2009
Cookies help us deliver our services. By using our services, you agree to our use of cookies.