Warning! You are not logged in. Log in or create an account to have your edits attributed to your username rather than your IP, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 46: Line 46:
=== Conclusions ===
=== Conclusions ===


A Kramers-Kronig consistent parametric model has been developed for the optical functions of wurtzite In<sub>x</sub>Ga<sub>1-x</sub>N alloy films of medium indium contents (0.38<x<0.68) deposited by a novel plasma-enhanced evaporation deposition system. This model employing simple Gaussian oscillators was used to fit spectroscopic ellipsometric data over the 0.8 eV to 4.5 eV range to obtain film thicknesses, dielectric functions and absorption coefficients. Using analytical expressions to accurately describe the optical functions of In<sub>x</sub>Ga<sub>1-x</sub>N films is an extremely important step in understanding the semiconductor and its utilization in high-efficiency solar photovoltaic cells. The optical characterization methods employed and the model developed can be used as a basis for the optical characterization of similar In<sub>x</sub>Ga<sub>1-x</sub>N thin films.
A Kramers-Kronig consistent parametric model has been developed for the optical functions of wurtzite InxGa1-xN alloy films of medium indium contents (0.38<x<0.68) deposited by a novel plasma-enhanced evaporation deposition system. This model employing simple Gaussian oscillators was used to fit spectroscopic ellipsometric data over the 0.8 eV to 4.5 eV range to obtain film thicknesses, dielectric functions and absorption coefficients. Using analytical expressions to accurately describe the optical functions of InxGa1-xN films is an extremely important step in understanding the semiconductor and its utilization in high-efficiency solar photovoltaic cells. The optical characterization methods employed and the model developed can be used as a basis for the optical characterization of similar InxGa1-xN thin films.  


=== Citation List ===
=== Citation List ===
Warning! All contributions to Appropedia are released under the CC-BY-SA-4.0 license unless otherwise noted (see Appropedia:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here! You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted material without permission!
Cancel Editing help (opens in new window)

This page is a member of a hidden category:

Cookies help us deliver our services. By using our services, you agree to our use of cookies.