ALD on polymers literature review

Compatibility of 3D-Printable Polymers with Atomic Layer Deposition

Contents

1 Atomic Layer Deposition (ALD)
 1.1 Principles of ALD
 1.1.1 Thermal ALD
 1.1.2 Plasma- or radical-enhanced ALD
 1.1.3 Spatial ALD
 1.2 ALD of Al2O3
 1.3 ALD equipment

2 3D printable polymers
 2.1 Additive manufacturing (AM)
 2.1.1 Stereolithography (SLA)
 2.1.2 Selective laser sintering (SLS)
 2.1.3 Fused filament fabrication (FFF)

3 Polymers in ALD
 3.1 Principles of ALD on polymers
 3.2 Applications of ALD-coated polymers
 3.3 Challenges

4 Future applications
 4.1 Spatial ALD for flexible electronics
 4.2 Functionalization of polymers with ALD
 4.3 3D printed reactor for ALD
 4.4 References
Atomic Layer Deposition (ALD)

Principles of ALD

Thermal ALD

Plasma- or radical-enhanced ALD

Spatial ALD

ALD of Al2O3

ALD equipment

3D printable polymers

Additive manufacturing (AM)

Stereolithography (SLA)

Selective laser sintering (SLS)

Fused filament fabrication (FFF)

Polymers in ALD

Principles of ALD on polymers

Applications of ALD-coated polymers

- Yang, Y.Q et al. Realization of thin film encapsulation by atomic layer deposition of Al2O3 at low temperature. The journal of physical chemistry. Volume 117, 2013, iss. 39, pp. 20308.

Challenges

Future applications

Spatial ALD for flexible electronics

Functionalization of polymers with ALD

3D printed reactor for ALD

- Plastic2Print. 1.75mm FEP Natural filament 0.75kg. Available online: https://www.plastic2print.com/175mm-fep-filament-0-75kg.html. Cited 3.3.2018.
References

34. Xiao, X et al. Durable superhydrophobic wool fabrics coating with nanoscale Al2O3 layer by atomic layer deposition. Volume 349, 2015, pp. 876-879.

50. Plastic2Print. 1.75mm FEP Natural filament 0.75kg. Available online: https://www.plastic2print.com/175mm-fep-filament-0-75kg.html. Cited 3.3.2018.