Changes

Jump to navigation Jump to search
m
no edit summary
Line 198: Line 198:  
==== 3.3 Casing Design ====
 
==== 3.3 Casing Design ====
   −
Many design plans were considered when attempting to find a suitable method to power the XO laptop with solar energy. The following sketch (Figure 3) is that of the first design solution formulated by the group.<br>The design is that of a rigid case into which the solar panel is placed. This model included a hinged top that may be locked into place, and a handle for easy portability. <br>Furthermore, the image below is that of another design concept formulated to accommodate a larger panel. The second design also included a handle and an additional feature of a hinged top that could act as a stand against which the bottom of the case could rest. This concept was added to the proposed product in order to provide the ability to adjust the angle at which the sun’s rays reach the solar module. <br>A design involving an amorphous solar module (Figure 4) was also considered due to the lightweight and compact nature of such a panel, thus making it extremely portable. The high cost of this solar solution was a main criterion that led to the dismissal of this prototype design.<br>Further designs were considered including cases capable of folding in half in order to make the product more compact. When considering various designs, a large number of criteria were used to differentiate between certain solutions. First of all, a casing that would be able to adjust the angle at which the solar panel is positioned relative to the sun was desired. This feature presents the ability to position the panel so as to gain optimal rays from the sun at varying times of day, and in turn, generate maximum efficiency from the solar panel. Research into the most favorable angle at which to place the solar module at different times of day was done with respect to areas of the globe where the majority of XO laptops are sold. With approximately 23,000 laptops sold in North Africa, and over 400,000 in South America, the group chose to focus on the sun’s rays along the equatorial line. The angle at which the sun strikes the equator changes as the day progresses, but the sun passes more directly overhead in the middle of the day at the equatorial line that in any other locations outside the Tropics of Cancer and Capricorn, and around the world. <br>The concept of a simple stand along the bottom of the casing, against which the product could rest, was furthermore developed. The group determined that the angle at which the panel should tilt must range between 0o and 45o in order to achieve optimal power output from the solar module. This was determined due to the fact that the sun spends the majority of its time during the day between -450 and 45o relative to its position perpendicularly overhead. This is particularly true for regions near the equator. Trigonometry was thus used in order to find the length the stand should measure. Equation (2) was utilized for the calculation to find the required length of the stand as follows:
+
Many design plans were considered when attempting to find a suitable method to power the XO laptop with solar energy. The following sketch (Figure 3) is that of the first design solution formulated by the group.<br>The design is that of a rigid case into which the solar panel is placed. This model included a hinged top that may be locked into place, and a handle for easy portability. <br>Furthermore, the image below is that of another design concept formulated to accommodate a larger panel. The second design also included a handle and an additional feature of a hinged top that could act as a stand against which the bottom of the case could rest. This concept was added to the proposed product in order to provide the ability to adjust the angle at which the sun’s rays reach the solar module. <br>A design involving an amorphous solar module (Figure 4) was also considered due to the lightweight and compact nature of such a panel, thus making it extremely portable. The high cost of this solar solution was a main criterion that led to the dismissal of this prototype design.<br>Further designs were considered including cases capable of folding in half in order to make the product more compact. When considering various designs, a large number of criteria were used to differentiate between certain solutions. First of all, a casing that would be able to adjust the angle at which the solar panel is positioned relative to the sun was desired. This feature presents the ability to position the panel so as to gain optimal rays from the sun at varying times of day, and in turn, generate maximum efficiency from the solar panel. Research into the most favorable angle at which to place the solar module at different times of day was done with respect to areas of the globe where the majority of XO laptops are sold. With approximately 23,000 laptops sold in North Africa, and over 400,000 in South America, the group chose to focus on the sun’s rays along the equatorial line. The angle at which the sun strikes the equator changes as the day progresses, but the sun passes more directly overhead in the middle of the day at the equatorial line that in any other locations outside the Tropics of Cancer and Capricorn, and around the world. <br>The concept of a simple stand along the bottom of the casing, against which the product could rest, was furthermore developed. The group determined that the angle at which the panel should tilt must range between 0o and 45o in order to achieve optimal power output from the solar module. This was determined due to the fact that the sun spends the majority of its time during the day between -450 and 45o relative to its position perpendicularly overhead. This is particularly true for regions near the equator. Trigonometry was thus used in order to find the length the stand should measure. Equation (2) was utilized for the calculation[http://www.acalculator.com/common-energy-payment-calculator.html  ] to find the required length of the stand as follows:
    
cos (45o) = a/L (2)  
 
cos (45o) = a/L (2)  
1

edit

Navigation menu