Get our free book (in Spanish or English) on rainwater now - To Catch the Rain.

Abuse filter log

Abuse Filter navigation (Home | Recent filter changes | Examine past edits | Abuse log)
Jump to navigation Jump to search
Details for log entry 65,101

03:34, 9 December 2013: 137.150.217.14 (talk) triggered filter 23, performing the action "edit" on WetLand Project Aquaponic System. Actions taken: Tag; Filter description: Anonymous edits (examine | diff)

Changes made in edit

 
|File: Granular_bed_to_sump_tank.jpeg |photo|11| Attach a pvc pipe to the bottom of the auto siphon. This will allow water to drain from the grow bed into sump tank.  
 
|File: Granular_bed_to_sump_tank.jpeg |photo|11| Attach a pvc pipe to the bottom of the auto siphon. This will allow water to drain from the grow bed into sump tank.  
 
|File: Water_pumps1.png|photo |12| Attach the electric water pumps on the outside of the stainless steel cage that holds the sump tank. One pump should move water from the sump tank to the fish tank, and the second should move water from the sump tank to the grow bed.  
 
|File: Water_pumps1.png|photo |12| Attach the electric water pumps on the outside of the stainless steel cage that holds the sump tank. One pump should move water from the sump tank to the fish tank, and the second should move water from the sump tank to the grow bed.  
|File: photo| photo|13| Description
+
|File: photo| photo|13| Compile all the main components (grow bed, sump tank, fish tank) into a design that is specific to where the aquaponic system is located and the amount of space available. The system is now complete and steps can be taken to properly grow plants and raise aquatic animals.
  
 
}}
 
}}

Action parameters

VariableValue
Edit count of the user (user_editcount)
Name of the user account (user_name)
137.150.217.14
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
*
Page ID (page_id)
50278
Page namespace (page_namespace)
0
Page title (without namespace) (page_title)
WetLand Project Aquaponic System
Full page title (page_prefixedtitle)
WetLand Project Aquaponic System
article_views
456
Action (action)
edit
Edit summary/reason (summary)
/* D.I.Y */
Whether or not the edit is marked as minor (no more in use) (minor_edit)
Old page wikitext, before the edit (no more in use) (old_wikitext)
{{Template:ENGR215inprogress|December 15th, 2013}} <!-- Comments that appear only in the edit view are formatted like this. --> <!-- These comments are offered as an aid as you get started. Remove as you wish. --> <!-- next line is the code for inserting an image; delete if you don't have an image yet --> [[File: Aquaponic_System.jpg|thumb|right|750px|center|Final design of aquaponic system.]] == Abstract == The purpose of this project is to create an aquaponic system that produces food for up to three people who will be living on the WetLand barge in Philidelphia during Summer 2014. It will also provide inspiration to visitors by demonstrating a closed looped food growing system that can be easily replicated. The project will be a collaborative effort including the WetLand project, residents on the WetLand barge, Humboldt State University, Team Hooked on ‘Ponics, the local community in Arcata, and the community of Philadelphia. == Background == Team Hooked on ‘Ponics was started by students at [http://www.humboldt.edu Humboldt State University] in the [[Engr215|Engineering 215 - Introduction to Design]] class taught by[[User:Lonny | Lonny Grafman]], during the Fall of 2013. The project required the team to construct an aquaponic system for the [[WetLand|WetLand]] project. The WetLand project’s mission is to present the world of water and wetlands by constructing an island-based ecosystem that acts as a mobile habitat floating on the Delaware River in Philadelphia. The floating barge will be open to the public to educate people about sustainable uses of resources and about water-based ecosystems. == Problem Statement and Criteria == The objective of this project is to design an aquaponic system capable of providing food for the occupants of the WetLand Project, while also showing the public a sustainable way to grow food and fish. The aquaponic system will be contained in a greenhouse located on the barge. It will be used by WetLand residents for 3 months in Summer 2014 with minimal maintenance tasks each day to ensure proper functioning of the system. Table 1 shows a list of criteria created by the Hooked on ‘Ponics team members in collaboration with WetLand team members. These criteria are weighted for importance to help the team choose a design that best fits the client’s needs. {| class="wikitable sortable" style="margin: 1em auto 1em auto" |+ Table-1: Criteria and Their Importance |- !style="background: #1A1A1A; color: white;"| Criteria !style="background: #1A1A1A; color: white;"| Importance !style="background: #1A1A1A; color: white;"| Description |- | Maintainability |align="center"|9 | Residence on barge must set aside 30 minutes/day to assure system is working properly |- | Cost |align="center"|7 | Less than $400 |- | Safety |align="center"|7 | Child proof and no one comes into contact with the anaerobic water |- | Productivity |align="center"|6 | Produce enough food for three people |- | Aesthetics |align="center"|5 | Aesthetically appealing for client and visitors |- | Level of Embodied Energy |align="center"|4 | To use as many recyclable and renewable materials |- |} == Description of Final Design: Aquaponic System == ==='''Aquaponic System Features'''=== [[Image:Final_Design.png|thumb|right|500px|Figure 1: CAD Drawing of Aquaponic System]] ====Tanks:==== The fish tank is made from a used, plastic cube called an intermediate bulk container. The fish tank holds approximately 250 gallons of water with 15 or more fish. The grow bed is made from 1/3 of a used intermediate bulk container and is filled with granular rocks for vegetation to be planted in. The last tank is the sump tank, made from the other 2/3 of an IBC, and holds around 100-200 gallons of water depending on the amount of water that is being cycled throughout the whole system. All tanks are painted with several coatings of mistint to block light. ====Pipes and Hosing:==== 1 inch PVC piping runs from the fish tank to the sump tank. Water levels are controlled by using hosing for plumbing. Piping also runs from the grow bed to the sump tank. This creates a closed loop system for water and nutrients to be cycled through each tank. ====Auto-Siphon:==== The granular grow bed contains an auto-siphoned bell that drains to the sump tank. The auto-siphon drains water from the grow bed in a cyclical timeframe (not sure exact time yet) ====Water Pumps:==== Within the sump tank, there are 2 water pumps that direct the flow of water from the sump tank, to the fish tank and grow bed. ====Aerator:==== An aerator hangs outside the sump tank. It uses a hose that goes into the sump tank to increase dissolved oxygen levels in the water, in order for the fish to thrive. == Design == The fish tank, sump tank, and grow bed are made from two recycled intermediate bulk containers (IBC). One complete IBC is used for the fish tank and holds up to 1,000 Liters. The second IBC is cut into two sections to form the grow bed and sump tank. The water level controller passively siphons water from the fish tank to the sump tank. This reduces the energy required the run the system's pumps and ensures that the fish tank will never be drained completely. From the sump tank, water is pumped into the grow bed where the plants' roots clean the water and the gravel filters out and large particulate matter. After the grow bed is filled completely, the water is drained by the autosiphon and released back into the fish tank where the cycle begins again. ===Design Considerations=== The system was designed to be easy to maintain for people unfamiliar with aquaponic systems. This criteria influenced many aspects of the final design-- most notably, the grow bed. While other parts of an aquaponic system (fish tank and sump tank) are fairy standard, there a variety of options for grow beds. Some of these options required special care and frequent testing and adjusting of water conditions, as well as the installation of additional filters. Ultimately we decided on using a granular grow bed because of simplicity and ease of use. No additional filters are needed, and it requires the least amount human intervention to maintain optimal water conditions. Energy efficiency was another design priority due to the nature of WetLand. Because the barge would not be connected to the electric grid, all lights, appliances and systems on the barge would only be able to operate on energy generated by the on-board solar panels. This limitation was especially challenging for our system which required air and water to be constantly circulating in the sytem. With this in mind, we sized our pumps and our system to operate on the smallest wattage possible. <!-- Components --> <gallery caption="Components"|center|> |center|[[File: Auto_Siphon.jpg]] File:pipe.jpg|Water level controller File:Auto_Siphon.jpg|The autosiphon and drainage pipes File:Water_pumps1.png|Electric water pumps attached to store-bought hosing to transfer water between all tanks File:Aerator.png|An air pump with four outlets to oxygenate water in the fish tank </gallery> ==Results == The aquaponic system cycles water at a rate of 400 gallons per hour, allowing optimal oxygenation for the fish to survive, where the fish provide nutrients for the edible plants to flourish. This design is capable of producing an adequate amount of food for 3 people. == D.I.Y == {{How to |title=How To Build An Aquaponic System |File: FISH_CONTAINER_Aquaponic_Store.jpg | |1 |Purchase your large materials that will hold up to 1000 liters of water. Hooked on 'Ponics purchased two previously used 500 gallon plastic intermediate bulk containers (IBC). |File: Daniel_Aquaponics.jpeg |photo |2 |Find a sturdy location to place your aquaponic system. Make sure there is a covering, no outside water is allowed in or near the system. |File: Cleaning_fish_tank.JPG |photo |3 |Thoroughly clean the inside and outside of the intermediate bulk containers (IBC). |File: Ari.JPG |photo |4| Convert your containers into suitable tanks for your system. This step will vary depending on what kind of containers you have procured. Here we are removing unnecessary components from our containers that would have interfered with the operation of the system. It is important to maintain structural stability while simultaneously providing maximum functionality. |File: Cages.JPG |photo |5|Reinforce your system. This step will also vary depending on the specifics of your system. The Hooked on 'Ponics team had to design for their system to be installed on a barge, so they built a frame to hold the grow bed in place. This may not be necessary if your system isn't on a moving barge! Take precautions to ensure that your system is safe and stable in the location that it is to be installed in. |File: Photo coming soon|photo |6|Cut one of the 500 gallon IBC in 2/3 which will be used for both the grow bed and sump tank. |File: Painted_IBC.JPG|photo|7| Paint the exterior of both intermediate bulk containers with paint containing zinc oxide. Sunlight can cause algae growth which can clog plumbing and disrupt water flow. |File: Insert_Photo |photo|8| Once the paint is dried, place the IBC containers for the fish tank back in the stainless steel cage. |File: Water_level_controller.jpeg |photo|9| Use plastic welding glue to attach the water level controller on the IBC valve. |File:Auto_siphon_bell.JPG |photo|10| Assemble the auto siphon bell in the granular grow bed which is made out of 1/3 of the second IBC. |File: Granular_bed_to_sump_tank.jpeg |photo|11| Attach a pvc pipe to the bottom of the auto siphon. This will allow water to drain from the grow bed into sump tank. |File: Water_pumps1.png|photo |12| Attach the electric water pumps on the outside of the stainless steel cage that holds the sump tank. One pump should move water from the sump tank to the fish tank, and the second should move water from the sump tank to the grow bed. |File: photo| photo|13| Description }} == Materials/Costs == Materials for the design of the aquaponics system were obtained by buying new, used, and discounted items. Some parts were also donated to the team. Table 2 details the total materials and costs for constructing the aquaponics system. {| class="wikitable sortable" style="margin: 1em auto 1em auto" |+ Table-2: Materials and Costs ! style="background: #1A1A1A; color: white;"|Quantity !! style="background: #1A1A1A; color: white;"| Material !! style="background: #1A1A1A; color: white;"| Discounted Price ($) !! style="background: #1A1A1A; color: white;"| Full Price ($) |- | align="center"|1 || Bi metal Blade |align="right"| 3.75 |align="right"| 3.99 |- | align="center"|1 || 1/2" x 25' marine grade hose |align="right"| 12.21 |align="right"| 12.99 |- | align="center"|1 || IBC tote (Fish Emul.) |align="right"| 100.00 |align="right"| 250.00 |- | align="center"|1 || Eco 396 Submersible Pump |align="right"| 20.40 |align="right"| 27.95 |- | align="center"|2 || Ecoplus small round air stone |align="right"| 5.60 |align="right"| 7.80 |- | align="center"|1 || Clear tubing (10ft) |align="right"| 1.00 |align="right"| 1.50 |- | align="center"|1 || Elemental O<sub>2</sub> Pump (254 GPH) |align="right"| 19.45 |align="right"| 23.95 |- | align="center"|1 || IBC tote (Wood Vinegar) |align="right"| 50.00 |align="right"| 250.00 |- | align="center"|1 || pH Testing Kit |align="right"| 19.35 |align="right"| 19.35 |- | align="center"|1 || Clear tubing (12ft) |align="right"| 1.20 |align="right"| 1.80 |- | align="center"|10 || 1" PVC Pipe |align="right"| 4.90 |align="right"| 5.19 |- | align="center"|2 || 4" ABS Pipe |align="right"| 5.58 |align="right"| 5.91 |- | align="center"|1 || PVC Coupler |align="right"| 10.51 |align="right"| 11.14 |- | align="center"|1 || Poly Bulkhead 1 1/4 |align="right"| 6.95 |align="right"| 6.95 |- | align="center"|1 || MIP adapt sxm 1 1/4 |align="right"| 1.50 |align="right"| 3.00 |- | align="center"|1 || s/40 Bush SxS 1 1/4 x 1 |align="right"| 0.99 |align="right"| 1.98 |- | align="center"|1 || Mistint Paint |align="right"| 6.99 |align="right"| 20.00 |- | align="center"|1 || Clear Caulking |align="right"| 9.99 |align="right"| 9.99 |- | align="center"|1 || 2x4x8 Fir |align="right"| 9.33 |align="right"| 3.11 |- |-class="sortbottom" |colspan="2" align="right"|'''Total Cost'''|| align="right" | '''$289.71''' |align="right"| '''$660.60''' |} === Design Cost === Design cost is measured in hours. The total hours spent on the creation of the Aquaponic System are 200 hours with the total hours being broken down into representative segments shown in the figure below. [[File:Design_Time.png|thumb|center|350px|Figure 2: Pie chart in design hours spent on each design section for the Aquaponic System.]] === Maintenance Cost === Maintenance cost is measured in minutes per day. The total minutes per day for the Aquaponic System is 30 minutes/day with the total being broken down into segments as shown in the figure and table below. [[File:Maintenance_Time.png|thumb|center|500px|Figure 3: Pie chart on minutes/day spent on maintaining the Aquaponic System.]] {|class="wikitable sortable" style="margin: 1em auto 1em auto" |+ Table-3: Maintenance the amount of time it takes |- !style="background: #1A1A1A; color: white;"| Maintenance !style="background: #1A1A1A; color: white;"|Time (minutes) |- | Check pH |align="center"|5 |- | Feed Fish |align="center"|5 |- | Weed out Grow Bed |align="center"|5 |- | Clean out Dead Fish |align="center"|5 |- | Watch System to Ensure Proper Usage |align="center"|10 |- |} == Video == Video coming soon == Discussion == Your discussion. === Next steps === The next steps. == References == Inspired by Aquaponic Systems? Check out these cool links. http://www.appropedia.org/Aquaponics http://beneficiallivingcenter.com/ == Hooked on 'Ponics == *[[User:CourtneyBrown|Courtney Brown]] *[[User:djb489|Daniel Burgett]] *[[User:Dcd263|David Douglas]] *[[User:Apierson|Ariane Pierson]] <!-- Don't change the next line unless you intend to change the categorization --> <!-- Do add additional, appropriate categories. See http://www.appropedia.org/Appropedia:CategoryTree for ideas. --> [[Category:Projects]] [[Category:Engr215 Introduction to Design]]
New page wikitext, after the edit (new_wikitext)
{{Template:ENGR215inprogress|December 15th, 2013}} <!-- Comments that appear only in the edit view are formatted like this. --> <!-- These comments are offered as an aid as you get started. Remove as you wish. --> <!-- next line is the code for inserting an image; delete if you don't have an image yet --> [[File: Aquaponic_System.jpg|thumb|right|750px|center|Final design of aquaponic system.]] == Abstract == The purpose of this project is to create an aquaponic system that produces food for up to three people who will be living on the WetLand barge in Philidelphia during Summer 2014. It will also provide inspiration to visitors by demonstrating a closed looped food growing system that can be easily replicated. The project will be a collaborative effort including the WetLand project, residents on the WetLand barge, Humboldt State University, Team Hooked on ‘Ponics, the local community in Arcata, and the community of Philadelphia. == Background == Team Hooked on ‘Ponics was started by students at [http://www.humboldt.edu Humboldt State University] in the [[Engr215|Engineering 215 - Introduction to Design]] class taught by[[User:Lonny | Lonny Grafman]], during the Fall of 2013. The project required the team to construct an aquaponic system for the [[WetLand|WetLand]] project. The WetLand project’s mission is to present the world of water and wetlands by constructing an island-based ecosystem that acts as a mobile habitat floating on the Delaware River in Philadelphia. The floating barge will be open to the public to educate people about sustainable uses of resources and about water-based ecosystems. == Problem Statement and Criteria == The objective of this project is to design an aquaponic system capable of providing food for the occupants of the WetLand Project, while also showing the public a sustainable way to grow food and fish. The aquaponic system will be contained in a greenhouse located on the barge. It will be used by WetLand residents for 3 months in Summer 2014 with minimal maintenance tasks each day to ensure proper functioning of the system. Table 1 shows a list of criteria created by the Hooked on ‘Ponics team members in collaboration with WetLand team members. These criteria are weighted for importance to help the team choose a design that best fits the client’s needs. {| class="wikitable sortable" style="margin: 1em auto 1em auto" |+ Table-1: Criteria and Their Importance |- !style="background: #1A1A1A; color: white;"| Criteria !style="background: #1A1A1A; color: white;"| Importance !style="background: #1A1A1A; color: white;"| Description |- | Maintainability |align="center"|9 | Residence on barge must set aside 30 minutes/day to assure system is working properly |- | Cost |align="center"|7 | Less than $400 |- | Safety |align="center"|7 | Child proof and no one comes into contact with the anaerobic water |- | Productivity |align="center"|6 | Produce enough food for three people |- | Aesthetics |align="center"|5 | Aesthetically appealing for client and visitors |- | Level of Embodied Energy |align="center"|4 | To use as many recyclable and renewable materials |- |} == Description of Final Design: Aquaponic System == ==='''Aquaponic System Features'''=== [[Image:Final_Design.png|thumb|right|500px|Figure 1: CAD Drawing of Aquaponic System]] ====Tanks:==== The fish tank is made from a used, plastic cube called an intermediate bulk container. The fish tank holds approximately 250 gallons of water with 15 or more fish. The grow bed is made from 1/3 of a used intermediate bulk container and is filled with granular rocks for vegetation to be planted in. The last tank is the sump tank, made from the other 2/3 of an IBC, and holds around 100-200 gallons of water depending on the amount of water that is being cycled throughout the whole system. All tanks are painted with several coatings of mistint to block light. ====Pipes and Hosing:==== 1 inch PVC piping runs from the fish tank to the sump tank. Water levels are controlled by using hosing for plumbing. Piping also runs from the grow bed to the sump tank. This creates a closed loop system for water and nutrients to be cycled through each tank. ====Auto-Siphon:==== The granular grow bed contains an auto-siphoned bell that drains to the sump tank. The auto-siphon drains water from the grow bed in a cyclical timeframe (not sure exact time yet) ====Water Pumps:==== Within the sump tank, there are 2 water pumps that direct the flow of water from the sump tank, to the fish tank and grow bed. ====Aerator:==== An aerator hangs outside the sump tank. It uses a hose that goes into the sump tank to increase dissolved oxygen levels in the water, in order for the fish to thrive. == Design == The fish tank, sump tank, and grow bed are made from two recycled intermediate bulk containers (IBC). One complete IBC is used for the fish tank and holds up to 1,000 Liters. The second IBC is cut into two sections to form the grow bed and sump tank. The water level controller passively siphons water from the fish tank to the sump tank. This reduces the energy required the run the system's pumps and ensures that the fish tank will never be drained completely. From the sump tank, water is pumped into the grow bed where the plants' roots clean the water and the gravel filters out and large particulate matter. After the grow bed is filled completely, the water is drained by the autosiphon and released back into the fish tank where the cycle begins again. ===Design Considerations=== The system was designed to be easy to maintain for people unfamiliar with aquaponic systems. This criteria influenced many aspects of the final design-- most notably, the grow bed. While other parts of an aquaponic system (fish tank and sump tank) are fairy standard, there a variety of options for grow beds. Some of these options required special care and frequent testing and adjusting of water conditions, as well as the installation of additional filters. Ultimately we decided on using a granular grow bed because of simplicity and ease of use. No additional filters are needed, and it requires the least amount human intervention to maintain optimal water conditions. Energy efficiency was another design priority due to the nature of WetLand. Because the barge would not be connected to the electric grid, all lights, appliances and systems on the barge would only be able to operate on energy generated by the on-board solar panels. This limitation was especially challenging for our system which required air and water to be constantly circulating in the sytem. With this in mind, we sized our pumps and our system to operate on the smallest wattage possible. <!-- Components --> <gallery caption="Components"|center|> |center|[[File: Auto_Siphon.jpg]] File:pipe.jpg|Water level controller File:Auto_Siphon.jpg|The autosiphon and drainage pipes File:Water_pumps1.png|Electric water pumps attached to store-bought hosing to transfer water between all tanks File:Aerator.png|An air pump with four outlets to oxygenate water in the fish tank </gallery> ==Results == The aquaponic system cycles water at a rate of 400 gallons per hour, allowing optimal oxygenation for the fish to survive, where the fish provide nutrients for the edible plants to flourish. This design is capable of producing an adequate amount of food for 3 people. == D.I.Y == {{How to |title=How To Build An Aquaponic System |File: FISH_CONTAINER_Aquaponic_Store.jpg | |1 |Purchase your large materials that will hold up to 1000 liters of water. Hooked on 'Ponics purchased two previously used 500 gallon plastic intermediate bulk containers (IBC). |File: Daniel_Aquaponics.jpeg |photo |2 |Find a sturdy location to place your aquaponic system. Make sure there is a covering, no outside water is allowed in or near the system. |File: Cleaning_fish_tank.JPG |photo |3 |Thoroughly clean the inside and outside of the intermediate bulk containers (IBC). |File: Ari.JPG |photo |4| Convert your containers into suitable tanks for your system. This step will vary depending on what kind of containers you have procured. Here we are removing unnecessary components from our containers that would have interfered with the operation of the system. It is important to maintain structural stability while simultaneously providing maximum functionality. |File: Cages.JPG |photo |5|Reinforce your system. This step will also vary depending on the specifics of your system. The Hooked on 'Ponics team had to design for their system to be installed on a barge, so they built a frame to hold the grow bed in place. This may not be necessary if your system isn't on a moving barge! Take precautions to ensure that your system is safe and stable in the location that it is to be installed in. |File: Photo coming soon|photo |6|Cut one of the 500 gallon IBC in 2/3 which will be used for both the grow bed and sump tank. |File: Painted_IBC.JPG|photo|7| Paint the exterior of both intermediate bulk containers with paint containing zinc oxide. Sunlight can cause algae growth which can clog plumbing and disrupt water flow. |File: Insert_Photo |photo|8| Once the paint is dried, place the IBC containers for the fish tank back in the stainless steel cage. |File: Water_level_controller.jpeg |photo|9| Use plastic welding glue to attach the water level controller on the IBC valve. |File:Auto_siphon_bell.JPG |photo|10| Assemble the auto siphon bell in the granular grow bed which is made out of 1/3 of the second IBC. |File: Granular_bed_to_sump_tank.jpeg |photo|11| Attach a pvc pipe to the bottom of the auto siphon. This will allow water to drain from the grow bed into sump tank. |File: Water_pumps1.png|photo |12| Attach the electric water pumps on the outside of the stainless steel cage that holds the sump tank. One pump should move water from the sump tank to the fish tank, and the second should move water from the sump tank to the grow bed. |File: photo| photo|13| Compile all the main components (grow bed, sump tank, fish tank) into a design that is specific to where the aquaponic system is located and the amount of space available. The system is now complete and steps can be taken to properly grow plants and raise aquatic animals. }} == Materials/Costs == Materials for the design of the aquaponics system were obtained by buying new, used, and discounted items. Some parts were also donated to the team. Table 2 details the total materials and costs for constructing the aquaponics system. {| class="wikitable sortable" style="margin: 1em auto 1em auto" |+ Table-2: Materials and Costs ! style="background: #1A1A1A; color: white;"|Quantity !! style="background: #1A1A1A; color: white;"| Material !! style="background: #1A1A1A; color: white;"| Discounted Price ($) !! style="background: #1A1A1A; color: white;"| Full Price ($) |- | align="center"|1 || Bi metal Blade |align="right"| 3.75 |align="right"| 3.99 |- | align="center"|1 || 1/2" x 25' marine grade hose |align="right"| 12.21 |align="right"| 12.99 |- | align="center"|1 || IBC tote (Fish Emul.) |align="right"| 100.00 |align="right"| 250.00 |- | align="center"|1 || Eco 396 Submersible Pump |align="right"| 20.40 |align="right"| 27.95 |- | align="center"|2 || Ecoplus small round air stone |align="right"| 5.60 |align="right"| 7.80 |- | align="center"|1 || Clear tubing (10ft) |align="right"| 1.00 |align="right"| 1.50 |- | align="center"|1 || Elemental O<sub>2</sub> Pump (254 GPH) |align="right"| 19.45 |align="right"| 23.95 |- | align="center"|1 || IBC tote (Wood Vinegar) |align="right"| 50.00 |align="right"| 250.00 |- | align="center"|1 || pH Testing Kit |align="right"| 19.35 |align="right"| 19.35 |- | align="center"|1 || Clear tubing (12ft) |align="right"| 1.20 |align="right"| 1.80 |- | align="center"|10 || 1" PVC Pipe |align="right"| 4.90 |align="right"| 5.19 |- | align="center"|2 || 4" ABS Pipe |align="right"| 5.58 |align="right"| 5.91 |- | align="center"|1 || PVC Coupler |align="right"| 10.51 |align="right"| 11.14 |- | align="center"|1 || Poly Bulkhead 1 1/4 |align="right"| 6.95 |align="right"| 6.95 |- | align="center"|1 || MIP adapt sxm 1 1/4 |align="right"| 1.50 |align="right"| 3.00 |- | align="center"|1 || s/40 Bush SxS 1 1/4 x 1 |align="right"| 0.99 |align="right"| 1.98 |- | align="center"|1 || Mistint Paint |align="right"| 6.99 |align="right"| 20.00 |- | align="center"|1 || Clear Caulking |align="right"| 9.99 |align="right"| 9.99 |- | align="center"|1 || 2x4x8 Fir |align="right"| 9.33 |align="right"| 3.11 |- |-class="sortbottom" |colspan="2" align="right"|'''Total Cost'''|| align="right" | '''$289.71''' |align="right"| '''$660.60''' |} === Design Cost === Design cost is measured in hours. The total hours spent on the creation of the Aquaponic System are 200 hours with the total hours being broken down into representative segments shown in the figure below. [[File:Design_Time.png|thumb|center|350px|Figure 2: Pie chart in design hours spent on each design section for the Aquaponic System.]] === Maintenance Cost === Maintenance cost is measured in minutes per day. The total minutes per day for the Aquaponic System is 30 minutes/day with the total being broken down into segments as shown in the figure and table below. [[File:Maintenance_Time.png|thumb|center|500px|Figure 3: Pie chart on minutes/day spent on maintaining the Aquaponic System.]] {|class="wikitable sortable" style="margin: 1em auto 1em auto" |+ Table-3: Maintenance the amount of time it takes |- !style="background: #1A1A1A; color: white;"| Maintenance !style="background: #1A1A1A; color: white;"|Time (minutes) |- | Check pH |align="center"|5 |- | Feed Fish |align="center"|5 |- | Weed out Grow Bed |align="center"|5 |- | Clean out Dead Fish |align="center"|5 |- | Watch System to Ensure Proper Usage |align="center"|10 |- |} == Video == Video coming soon == Discussion == Your discussion. === Next steps === The next steps. == References == Inspired by Aquaponic Systems? Check out these cool links. http://www.appropedia.org/Aquaponics http://beneficiallivingcenter.com/ == Hooked on 'Ponics == *[[User:CourtneyBrown|Courtney Brown]] *[[User:djb489|Daniel Burgett]] *[[User:Dcd263|David Douglas]] *[[User:Apierson|Ariane Pierson]] <!-- Don't change the next line unless you intend to change the categorization --> <!-- Do add additional, appropriate categories. See http://www.appropedia.org/Appropedia:CategoryTree for ideas. --> [[Category:Projects]] [[Category:Engr215 Introduction to Design]]
Unified diff of changes made by edit (edit_diff)
@@ -110,7 +110,7 @@ |File:Auto_siphon_bell.JPG |photo|10| Assemble the auto siphon bell in the granular grow bed which is made out of 1/3 of the second IBC. |File: Granular_bed_to_sump_tank.jpeg |photo|11| Attach a pvc pipe to the bottom of the auto siphon. This will allow water to drain from the grow bed into sump tank. |File: Water_pumps1.png|photo |12| Attach the electric water pumps on the outside of the stainless steel cage that holds the sump tank. One pump should move water from the sump tank to the fish tank, and the second should move water from the sump tank to the grow bed. -|File: photo| photo|13| Description +|File: photo| photo|13| Compile all the main components (grow bed, sump tank, fish tank) into a design that is specific to where the aquaponic system is located and the amount of space available. The system is now complete and steps can be taken to properly grow plants and raise aquatic animals. }}
New page size (new_size)
14574
Old page size (old_size)
14313
Lines added in edit (added_lines)
|File: photo| photo|13| Compile all the main components (grow bed, sump tank, fish tank) into a design that is specific to where the aquaponic system is located and the amount of space available. The system is now complete and steps can be taken to properly grow plants and raise aquatic animals.
Unix timestamp of change (timestamp)
1386560095