VRLA batteries in photovoltaic energy storage systems for telecom applications[edit | edit source]

Frank, R.; Giess, H., "VRLA batteries in photovoltaic energy storage systems for telecom applications," Telecommunications Energy Conference, INTELEC '93. 15th International , vol.1, no., pp.54,58 vol.1, 27-30 Sep 1993 doi: 10.1109/INTLEC.1993.388469

The Swiss PTT has installed an active repeater station powered by a photovoltaic energy storage system (PVES) on the peak Pit Muttler situated in the vicinity of the border corner Switzerland-Austria-Italy at an altitude of 3294 m. The PVES system consists of 72 60 W (4.32 kW-36m2) solar panels with associated maximum power trackers and charging controllers. The photovoltaic energy is stored in 24 V batteries using 2 V VRLA Compact Power cells with a nominal capacity of 1000 Ah (C10) per cell. In order to evaluate the worst case conditions of extremely low temperatures within the battery room, the low temperature (-30°C) and the low voltage (0.00 V/cell) behaviour of such cells is reported. Batteries survive freeze/thaw cycles unscathed and can be recharged with the electrolyte "frozen"

Microprocessor-Controlled SIT Inverter for Solar Energy System[edit | edit source]

Harashima, F.; Inaba, Hiroshi; Kondo, S.; Takashima, Nobukazu, "Microprocessor-Controlled SIT Inverter for Solar Energy System," Industrial Electronics, IEEE Transactions on , vol.IE-34, no.1, pp.50,55, Feb. 1987 doi: 10.1109/TIE.1987.350924

A microprocessor-controlled static induction transistor (SIT) inverter is proposed to link a solar battery with a utility ac power line. The main control objectives are to optimize the power flow from the solar battery to the utility power line and to compensate the reactive power, including harmonic distortion. The performance is well realized by the experimental setup.

A novel utility interfaced high-frequency link photovoltaic power conditioning system[edit | edit source]

Bhat, A.K.S.; Dewan, S.B., "A novel utility interfaced high-frequency link photovoltaic power conditioning system," Industrial Electronics, IEEE Transactions on , vol.35, no.1, pp.153,159, Feb 1988 doi: 10.1109/41.3079

Utility-line-interfaced photovoltaic power conditioning (PVPC) systems are gaining popularity in augmenting energy. PVPC systems utilizing a high-frequency (HF) isolation link have the well-known advantages of small size, light weight, etc. Here, a utility interfaced HF-link PVPC system is presented. The system discussed consists of a resonant (load commutated asymmetrical silicon-controlled rectifier) (ASCR) HF inverter, a rectifier, and a line-commutated inverter working with a power factor near unity. An HF transformer provides the isolation between the photovoltaic array and the utility line. The HF resonant inverter uses an LCC type commutation circuit and has inherent fault-protection capability under a number of fault conditions. The working details of the scheme are presented together with logic circuit schematics. Experimental results obtained with a prototype unit are also given

Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency[edit | edit source]

J.K. Kaldellis, D. Zafirakis, Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency, Energy, Volume 32, Issue 12, December 2007, Pages 2295-2305, ISSN 0360-5442, http://dx.doi.org/10.1016/j.energy.2007.07.009.

The high wind and solar potential along with the extremely high electricity production cost met in the majority of Greek Aegean islands comprising autonomous electrical networks, imply the urgency for new renewable energy sources (RES) investments. To by-pass the electrical grid stability constraints arising from an extensive RES utilization, the adaptation of an appropriate energy storage system (ESS) is essential. In the present analysis, the cost effect of introducing selected storage technologies in a large variety of autonomous electrical grids so as to ensure higher levels of RES penetration, in particular wind and solar, is examined in detail. A systematic parametrical analysis concerning the effect of the ESSs' main parameters on the economic behavior of the entire installation is also included. According to the results obtained, a properly sized RES-based electricity generation station in collaboration with the appropriate energy storage equipment is a promising solution for the energy demand problems of numerous autonomous electrical networks existing worldwide, at the same time suggesting a clean energy generation alternative and contributing to the diminution of the important environmental problems resulting from the operation of thermal power stations.

Techno-economic assessment of a stand-alone PV/hybrid installation for low-cost electrification of a tourist resort in Greece[edit | edit source]

G.C. Bakos, M. Soursos, Techno-economic assessment of a stand-alone PV/hybrid installation for low-cost electrification of a tourist resort in Greece, Applied Energy, Volume 73, Issue 2, October 2002, Pages 183-193, ISSN 0306-2619, http://dx.doi.org/10.1016/S0306-2619(02)00062-4.

This paper reports on the techno-economic assessment of an autonomous hybrid PV/diesel system installed in a bungalow complex in Elounda, Crete. Technical and economic factors are examined using a computerized renewable-energy technologies assessment tool. Several different economic and financial feasibility indices are calculated, such as the Internal Rate-of-Return (IRR), Year-to-positive cash flow, Net Present Value (NPV) and the simple Pay-Back Period (PBP) for different financing scenarios, in order to assess the gross return on the investment.

Comparative analysis of WLAN, WiMAX and UMTS technologies[edit | edit source]

Kavas, Aktul. "Comparative analysis of wlan, wimax and umts technologies." In PIERS Proceedings, pp. 140-144. 2007.

Today wireless communication systems can be classified in two groups. The first group technology provides low data rate and mobility while the other one procures high data rate and bandwidth with small coverage. Cellular systems and Broadband Wireless Access technologies can be given as proper examples respectively. In this study WLAN, WiMAX and UMTS technologies are introduced and comparative analysis in terms of peak data rate, bandwidth, multiple access techniques, mobility, coverage, standardization, and market penetration is presented.

Energy Consumption of the Internet[edit | edit source]

Baliga, Jayant, Kerry Hinton, and Rodney S. Tucker. Energy consumption of the Internet. University of Melbourne, Department of Electrical and Electronic Engineering, 2011.

As concerns about global energy consumption increase, the power consumption of the Internet is a matter of increasing importance. We present a network-based model that estimates Internet power consumption including the core, metro, and access networks.

Long- vs. Short-Term Energy Storage Technologies Analysis A Life-Cycle Cost Study A Study for the DOE Energy Storage Systems Program[edit | edit source]

Schoenung, Susan M., and William V. Hassenzahl. "Long-vs. Short-Term Energy Storage Technologies Analysis. A Life-Cycle Cost Study. A Study for the DOE Energy Storage Systems Program." Sandia National Laboratories (2003).

This report extends an earlier characterization of long-duration and short-duration energy storage technologies to include life-cycle cost analysis. Energy storage technologies were examined for three application categories–bulk energy storage, distributed generation, and power quality–with significant variations in discharge time and storage capacity. More than 20 different technologies were considered and figures of merit were investigated including capital cost, operation and maintenance, efficiency, parasitic losses, and replacement costs. Results are presented in terms of leveled annual cost, $/kW-yr. The cost of delivered energy, cents/kWh, is also presented for some cases. The major study variable was the duration of storage available for discharge.

Comparison of the costs of energy storage technologies for T&D applications[edit | edit source]

Nurai, A. "Comparison of the costs of energy storage technologies for T&D applications." American Electric Power, downloaded from www. electricitystorage. org (2004): 1-30.

The comparisons are based on the cost information provided by manufacturers, as quoted in the Handbook, assuming an installation in 2006. This information is approximate and only for initial screening.

Generation control circuit for photovoltaic modules[edit | edit source]

Shimizu, T.; Hirakata, M.; Kamezawa, T.; Watanabe, H., "Generation control circuit for photovoltaic modules," Power Electronics, IEEE Transactions on , vol.16, no.3, pp.293,300, May 2001 doi: 10.1109/63.923760

Photovoltaic modules must generally be connected in series in order to produce the voltage required to efficiently drive an inverter. However, if even a very small part of photovoltaic module (PV module) is prevented from receiving light, the generation power of the PV module is decreased disproportionately. This greater than expected decrease occurs because PV modules which do not receive adequate light cannot operate on the normal operating point, but rather operate as loads. As a result, the total power from the PV modules is decreased if even only a small part of the PV modules are shaded. In the present paper, a novel circuit, referred to as the generation control circuit (GCC), which enables maximum power to be obtained from all of the PV modules even if some of the modules are prevented from receiving light. The proposed circuit enables the individual PV modules to operate effectively at the maximum power point tracking, irrespective of the series connected PV module system. In addition, the total generated power is shown experimentally to increase for the experimental set-up used in the present study.

Design, analysis and limitations of a DC-to-AC converter usable for interface alternative energy sources and energy storage systems with the utility grid[edit | edit source]

Chakravorti, A.K.; Emanuel, A.E., "Design, analysis and limitations of a DC-to-AC converter usable for interface alternative energy sources and energy storage systems with the utility grid," Power Electronics Specialists Conference, 1993. PESC '93 Record., 24th Annual IEEE , vol., no., pp.595,601, 20-24 Jun 1993 doi: 10.1109/PESC.1993.471987

A DC-AC power converter design that can be used to interface any type of alternative energy source or energy storage system with the utility grid is presented. The converter is capable of real and reactive power exchanges between the utility grid and the alternative energy source(s). The control philosophy is very simple and allows for the synthesis of useful harmonics. Experimental results are provided to demonstrate the versatility of the converter circuit as a reactive power exchanger at the fundamental frequency; an active power line conditioner; and an active filter. Various design constraints are discussed and the limitations of the converter circuit are analyzed.

Modelling, simulation and control of photovoltaic converter systems[edit | edit source]

Gow, John A. "Modelling, simulation and control of photovoltaic converter systems." PhD diss., © JA Gow, 1998.

This section provides an overview of research in solar photovoltaic (PV) power conversion systems. From the start it was decided that the research should be confined to power electronics, that is the energy conversion systems as opposed to the design, development and optimization of PV cells and arrays. The research therefore took place with a view to improving the power electronics technology present in PV conversion systems. Computer simulation figured extensively in the research as a means to verify the performance of circuits and control strategies and to determine whether the proposed system would be worth implementing in hardware. As such a description of the various computer simulation and modelling tools used in the project is given in this section.

Energy consumption in wired and wireless access networks[edit | edit source]

Baliga, J.; Ayre, R.W.A.; Hinton, K.; Tucker, RodneyS., "Energy consumption in wired and wireless access networks," Communications Magazine, IEEE , vol.49, no.6, pp.70,77, June 2011 doi: 10.1109/MCOM.2011.5783987

Energy consumption is becoming an increasingly important issue throughout the community. For network operators in particular it is a concern as networks expand to deliver increasing traffic levels to increasing numbers of customers. The majority of the energy used by the Internet today is consumed in the access network, and this will continue to be the case for the short-to-mid- term future. Access technologies should thus be a prime focus for energy use mitigation. In this article, we present a detailed analysis of energy consumption in current and future access networks. We present the energy consumption of DSL, HFC networks, passive optical networks, fiber to the node, point-to-point optical systems, UMTS (W-CDMA), and WiMAX. Optical access networks are the most energy efficient of the available access technologies.

Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques[edit | edit source]

Esram, Trishan, and Patrick L. Chapman. "Comparison of photovoltaic array maximum power point tracking techniques." IEEE TRANSACTIONS ON ENERGY CONVERSION EC 22, no. 2 (2007): 439.

The many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed. The techniques are taken from the literature dating back to the earliest methods. It is shown that at least 19 distinct methods have been introduced in the literature, with many variations on implementation. This paper should serve as a convenient reference for future work in PV power generation.

Development of a microcontroller-based, photovoltaic maximum power point tracking control system[edit | edit source]

Koutroulis, E.; Kalaitzakis, K.; Voulgaris, N.C., "Development of a microcontroller-based, photovoltaic maximum power point tracking control system," Power Electronics, IEEE Transactions on , vol.16, no.1, pp.46,54, Jan 2001 doi: 10.1109/63.903988

Maximum power point tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic array output power, irrespective of the temperature and irradiation conditions and of the load electrical characteristics. A new MPPT system has been developed, consisting of a buck-type DC/DC converter, which is controlled by a microcontroller-based unit. The main difference between the method used in the proposed MPPT system and other techniques used in the past is that the PV array output power is used to directly control the DC/DC converter, thus reducing the complexity of the system. The resulting system has high-efficiency, lower-cost and can be easily modified to handle more energy sources (e.g., wind-generators). The experimental results show that the use of the proposed MPPT control increases the PV output power by as much as 15% compared to the case where the DC/DC converter duty cycle is set such that the PV array produces the maximum power at 1 kW/m2 and 25°C.

Integrated photovoltaic maximum power point tracking converter[edit | edit source]

Enslin, J.H.R.; Wolf, M.S.; Snyman, D.B.; Swiegers, W., "Integrated photovoltaic maximum power point tracking converter," Industrial Electronics, IEEE Transactions on , vol.44, no.6, pp.769,773, Dec 1997 doi: 10.1109/41.649937

A low-power low-cost highly efficient maximum power point tracker (MPPT) to be integrated into a photovoltaic (PV) panel is proposed. This can result in a 25% energy enhancement compared to a standard photovoltaic panel, while performing functions like battery voltage regulation and matching of the PV array with the load. Instead of using an externally connected MPPT, it is proposed to use an integrated MPPT converter as part of the PV panel. It is proposed that this integrated MPPT uses a simple controller in order to be cost effective. Furthermore, the power converter has to be very efficient, in order to transfer more energy to the load than a directly-coupled system. This is achieved by using a simple soft-switched topology. A much higher conversion efficiency at lower cost will then result, making the MPPT an affordable solution for small PV energy systems.

Battery storage for PV power systems: An overview[edit | edit source]

A. Chaurey, S. Deambi, Battery storage for PV power systems: An overview, Renewable Energy, Volume 2, Issue 3, June 1992, Pages 227-235, ISSN 0960-1481, http://dx.doi.org/10.1016/0960-1481(92)90036-3.

Batteries used in photovoltaic applications are required to have particular properties in order to minimize the system cost, in addition to meeting stringent reliability requirements associated with PV system installations. The battery sizing, installation, operation and maintenance, thus, are fundamentally different from those used in several other energy storage applications. The current paper gives an overview of battery systems commonly used in PV installation, as well as several new options which are found suitable or have been modified suitably to meet PV energy storage requirements. The systems are discussed briefly with respect to their construction, performance characteristics and compatibility with PV systems. The battery sizing procedures are also reviewed.

DSP-based controller application in battery storage of photovoltaic system[edit | edit source]

Chihchiang Hua; Jong Rong Lin, "DSP-based controller application in battery storage of photovoltaic system," Industrial Electronics, Control, and Instrumentation, 1996., Proceedings of the 1996 IEEE IECON 22nd International Conference on , vol.3, no., pp.1705,1710 vol.3, 5-10 Aug 1996 doi: 10.1109/IECON.1996.570673

Photovoltaic power systems normally use maximum power point tracking (MPPT) to continuously deliver the highest possible power to the load when changes in insolation and temperature occur. This overcomes the problem of mismatch between the solar cells and the given load. The solar array is normally treated as a voltage source, but it is treated as a current source in this paper. A simple method of tracking the maximum power point (MPP) and forcing the PV power system to operate near this point is also presented. The effect of the negative impedance of power converters on the MPPT process is also considered. As to the system equivalent circuit model, the principle of energy conservation is used to develop large- and small-signal models and the transfer function. By using this model, the drawbacks of the state-space-averaging method can be overcome. A TI320C25 digital signal processor (DSP) was used to implement the proposed MPPT controller; simulations and experimental results show its excellent performance

Fuzzy logic control of stand-alone photovoltaic system with battery storage[edit | edit source]

S. Lalouni, D. Rekioua, T. Rekioua, E. Matagne, Fuzzy logic control of stand-alone photovoltaic system with battery storage, Journal of Power Sources, Volume 193, Issue 2, 5 September 2009, Pages 899-907, ISSN 0378-7753, http://dx.doi.org/10.1016/j.jpowsour.2009.04.016.

Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.

Resistive Control for a Photovoltaic Battery Charging System Using a Microcontroller[edit | edit source]

Lee, J.H.; Bae, H.S.; Cho, B. -H, "Resistive Control for a Photovoltaic Battery Charging System Using a Microcontroller," Industrial Electronics, IEEE Transactions on , vol.55, no.7, pp.2767,2775, July 2008 doi: 10.1109/TIE.2008.922594

A new control algorithm has been developed, consisting of a buck-type dc/dc converter, which is used in a parallel-operated photovoltaic battery charging system. From the past research, it has been analyzed that the current loop that is generally used in the parallel operation of the power conditioner has an inherent stability problem in the large-signal domain in the photovoltaic system. The proposed algorithm directly transforms the effective input characteristic of the converter seen by the solar array into a resistive load, which is controlled by a microcontroller-based unit. Thus, the resulting system eliminates the instability associated with the current loop in the photovoltaic system. In addition, it is simple, flexible, and easily expandable. To analyze the effects of the one-sample delay caused by the digital controller, the emulated function in the case of average current mode control is modeled using small-signal approaches, and the design criteria are presented. The experimental results from 180-W prototype hardware show that the proposed algorithm has a simple implementation structure and can stabilize the system in the entire region of the solar array.

Developing a mobile stand alone photovoltaic generator[edit | edit source]

R. Soler-Bientz, L.O. Ricalde-Cab, L.E. Solis-Rodriguez, Developing a mobile stand alone photovoltaic generator, Energy Conversion and Management, Volume 47, Issues 18–19, November 2006, Pages 2948-2960, ISSN 0196-8904, http://dx.doi.org/10.1016/j.enconman.2006.03.024.

This paper describes a recent work developed to create a mobile stand alone photovoltaic generator that can be easily relocated in remote areas to evaluate the feasibility of photovoltaic energy applications. A set of sensors were installed to monitor the electric current and voltage of the energy generated, the energy stored and the energy used by the loads that may be connected to the system. Other parameters like solar radiations (both on the horizontal and on the photovoltaic generation planes) and temperatures (of both the environment and the photovoltaic module) were monitored. This was done while considering the important role of temperature in the photovoltaic module performance. Finally, a measurement and communication hardware was installed to interface the system developed with a conventional computer. In this way, the performance of the overall system in real rural conditions could be evaluated efficiently. Visual software that reads, visualizes and saves the data generated by the system was also developed by means of the LabVIEW programming environment.

A modular strategy for isolated photovoltaic systems based on microcontroller[edit | edit source]

Alberto M. Pernía, Jorge Arias, Miguel J. Prieto, Juan Ángel Martínez, A modular strategy for isolated photovoltaic systems based on microcontroller, Renewable Energy, Volume 34, Issue 7, July 2009, Pages 1825-1832, ISSN 0960-1481, http://dx.doi.org/10.1016/j.renene.2008.11.026.

Many different types of commercial regulators can be found in the market. These devices can be basically divided into two categories according to their operation mode: those which modulate the input voltage using PWM (pulse-width modulation) in order to generate the output voltage required to charge the batteries; and those which make the PV (photovoltaic) array operate in their MPP (maximum power point), which can be tracked in several different ways. The former are normally used for low-power applications, whereas the latter can provide an increase of power up to 25% as compared to their PWM counterpart. This paper presents a regulator which can operate in the maximum power point of PV arrays by means of a microcontroller. A simple, highly-accurate algorithm suitable to be implemented in a low-cost microcontroller has been developed in order to make PV arrays track and operate in their maximum power point. The control strategy proposed allows parallel connection of different regulators, thus making it possible to keep and integrate previous equipment.

A simple PV array modeling using MATLAB[edit | edit source]

Bhaskar, M.A.; Vidya, B.; Madhumitha, R.; Priyadharcini, S.; Jayanthi, K.; Malarkodi, G.R., "A simple PV array modeling using MATLAB," Emerging Trends in Electrical and Computer Technology (ICETECT), 2011 International Conference on , vol., no., pp.122,126, 23-24 March 2011 doi: 10.1109/ICETECT.2011.5760103

This paper presents the general overview on the requirement of renewable energy mainly the solar power. We have also dealt with the types of solar power available and the basic modeling of solar energy system mainly the photo voltaic type has been discussed. MATLAB Simulink has been used as a tool to provide the I-V and P-V plots of the system.

Portable Photo-voltaic Stand-alone System, Operating at Very Low Power Conditions[edit | edit source]

Del Vecchio, P.; Timidei, A., "Portable Photo-voltaic Stand-alone System, Operating at Very Low Power Conditions," Clean Electrical Power, 2007. ICCEP '07. International Conference on , vol., no., pp.387,388, 21-23 May 2007 doi: 10.1109/ICCEP.2007.384241

A new approach to mobile photo-voltaic systems is proposed; the system described in this paper is of very low power (5 W) and is intended mainly for recharging or powering small portable electronics devices. The objects of this study are: (i) the optimization of photo-voltaic cells connection with regard to mobile conditions; a nonstandard topology is adopted, to compensate shadowing or non-optimal orientation; (ii) the introduction of a novel topology for battery and DC/DC converter, in which the battery voltage is optimized for photo-voltaic operation and a buck-boost converter can provide any voltage to the load. A good efficiency is achieved also in marginal condition of illumination (0.1 W). A prototype has been built with thin film photo-voltaic cells mounted on a flexible plastic support and integrated in a jacket. A series of measurements have been performed in a real-life situation, and the system has been characterized. The efficiency of the proposed system has been compared with a conventional system, in the same operating conditions.

A battery management system for stand-alone photovoltaic energy systems[edit | edit source]

Duryea, S.; Islam, S.; Lawrance, W., "A battery management system for stand-alone photovoltaic energy systems," Industry Applications Magazine, IEEE , vol.7, no.3, pp.67,72, Jun 2001 doi: 10.1109/2943.922452

It is estimated that about 80% of all photovoltaic (PV) modules are used in stand-alone applications. Continuous power is obtained from PV systems by using a storage buffer, typically in the form of a lead acid battery. Batteries used in PV applications have different performance characteristics compared with batteries used in more traditional applications. In PV applications, lead acid batteries do not reach the cycle of lead acid batteries used in other applications such as uninterruptible power supplies or electric vehicles. The shortened battery life contributes significantly to the costs of a PV system. In some PV systems the battery accounts for more than 40% of the life cycle costs. An increase in the lifetime of the battery will result in improved reliability of the system and a significant reduction in operating costs. The life of a lead acid battery can be extended by avoiding critical operating conditions such as overcharge and deep discharge. This paper presents a battery management system for such applications

[WiMAX, making ubiquitous high-speed data services a reality][edit | edit source]

Alcatel(online)

WiMAX Mesh networks for underserved areas[edit | edit source]

Sedoyeka, E.; Hunaiti, Z.; Al Nabhan, M.; Balachandran, W., "WiMAX Mesh networks for underserved areas," Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS International Conference on , vol., no., pp.1070,1075, March 31 2008-April 4 2008 doi: 10.1109/AICCSA.2008.4493680

The initiatives to bridge the divide have been hindered by a number of factors, but mostly by infrastructural and cost demands of the current technology used. Worldwide Interoperability for Microwave Access (WiMAX) comes at a time when the need to communicate is at its highest. Designed to provide throughput similar to that of wired networks, WiMAX wireless and mobility features promises hope to underserved areas. WiMAX Mesh topology connects subscribers to the Internet without being connected to the Base Station (BS). Without relying on basic infrastructure like roads, tunnels or network backbones, WiMAX mesh will provide answers to long existing connectivity demands for underserved areas. This paper proposes a different approach, one that will lower the subscriber's cost and hence help to bridge the divide by using communities to set mesh networks and eliminate the 'middleman'. It provides insight into WiMAX, citing its mesh capabilities as the key-enabling factor in bridging the divide. The results found from a survey conducted about the problems facing developing countries are incorporated and used to show how this topology will suite developing countries' environments.

Notes

Throughput enhancement in WiMax mesh networks using concurrent transmission[edit | edit source]

Jian Tao; Fuqiang Liu; Zhihui Zeng; Zhangxi Lin, "Throughput enhancement in WiMax mesh networks using concurrent transmission," Wireless Communications, Networking and Mobile Computing, 2005. Proceedings. 2005 International Conference on , vol.2, no., pp.871,874, 23-26 Sept. 2005 doi: 10.1109/WCNM.2005.1544189

The WiMax mesh networks based on IEEE 802.16 standard (2004) was developed with the goal of providing for easy, fast and cost-effective network set-up, deployment and extension. The standard defines scheduling scheme in mesh mode, but don't specify spatial resource management in the protocol. In this paper, we design a general algorithm for SSs to achieve concurrent transmission in both uplink and downlink streams. Constructing and adjustment of routing tree is also given in the paper. Simulation results show that overall end-to-end throughput is greatly improved when using our proposed algorithm for concurrency, and that the algorithm performs best when the routing tree is adjusted.

Notes

References[edit | edit source]


FA info icon.svg Angle down icon.svg Page data
Authors Greeshma Akash
License CC-BY-SA-4.0
Language English (en)
Related 0 subpages, 3 pages link here
Impact 205 page views
Created April 28, 2022 by Irene Delgado
Modified February 23, 2024 by Felipe Schenone
Cookies help us deliver our services. By using our services, you agree to our use of cookies.