Embedded energy , juga dikenal sebagai embodied energy, didefinisikan sebagai Energi yang digunakan dalam pekerjaan pembuatan suatu produk. Embodied energy adalah upaya untuk mengukur total semua energi yang diperlukan untuk seluruh Daur Hidup produk . Siklus hidup ini meliputi ekstraksi bahan baku, transportasi, [1] pembuatan, perakitan, pemasangan, pembongkaran, dekonstruksi dan/atau dekomposisi.
Metodologi yang berbeda menghasilkan pemahaman yang berbeda tentang skala dan ruang lingkup aplikasi dan jenis energi yang diwujudkan. Beberapa metodologi tertarik untuk memperhitungkan energi yang terkandung dalam minyak yang mendukung proses ekonomi.
Daftar isi
Standar
Kode Inggris untuk Rumah Berkelanjutan dan Kepemimpinan LEED AS dalam Desain Energi dan Lingkungan adalah standar di mana energi yang terkandung dari suatu produk atau bahan dinilai, bersama dengan faktor lain, untuk menilai dampak lingkungan bangunan . Energi yang terkandung adalah konsep baru yang para ilmuwan belum menyetujui nilai universal absolut karena ada banyak variabel yang harus diperhitungkan, tetapi sebagian besar setuju bahwa produk dapat dibandingkan satu sama lain untuk melihat mana yang memiliki lebih banyak dan mana yang memiliki lebih sedikit energi yang terkandung. Daftar perbandingan (sebagai contoh, lihat Inventarisasi Bahan Energi & Karbon yang Diwujudkan Universitas Bath di bawah) berisi nilai rata-rata absolut, dan menjelaskan faktor-faktor yang telah diperhitungkan saat menyusun daftar.
Typical embodied energy units used are MJ/kg (megaJoules of energy needed to make a kilogram of product), tCO2 (tonnes of Carbon dioxide created by the energy needed to make a kilogram of product). Converting MJ to tCO2 is not straightforward because different types of energy (oil, wind, solar, nuclear and so on) emit different amounts of carbon dioxide, so the actual amount of carbon dioxide emitted when a product is made will be dependent on the type of energy used in the manufacturing process. For example, the Australian Government[2] gives a global average of 0.098 tCO2 = 1 GJ. This is the same as 1 MJ = 0.098 kgCO2 = 98 gCO2 or 1 kgCO2 = 10.204 MJ.
Related methodologies
In the 2000s drought conditions in Australia have generated interest in the application of embodied energy analysis methods to water. This has led to use of the concept of Embodied water.
Terminology
David M. Scienceman coined the term emergy as a general synonym for embodied energy.[3]
Example
EMBODIED ENERGY | MJ/kg |
---|---|
Air dried sawn hardwood | 0.5 |
Stabilised earth | 0.7 |
Concrete blocks | 1.5 |
Embedded Carbon & Energy
Berikut ini tautan ke salah satu dokumen paling lengkap hingga saat ini tentang energi dan karbon yang tertanam dalam material, Inventarisasi (Embodied) Carbon & Energy (ICE) .
Lihat juga
Referensi
- ↑ Advances in free geographic mapping services can help reduce embodied energy of transportation in two ways. First. to choose a route that uses the least fuel and maintains vehicle velocities at their individual maximum fuel efficiency. Secondly, overlays can be used of determining: (i) raw material and products availability as a function of location, and (ii) modes of transportation as a function of emissions. These overlays enable manufacturers access to an easily navigable method to optimize the life cycle of their products by minimizing embodied energy of transportation. Pearce, J.M., Johnson, S.J., & Grant, G.B., 2007. “3D-Mapping Optimization of Embodied Energy of Transportation”, Resources, Conservation and Recycling, 51 pp. 435–453. [1]
- ↑ http://web.archive.org/web/20081018053322/http://www.cmit.csiro.au:80/brochures/tech/embodied/ CSIRO on embodied energy: Australia's foremost scientific institution
- ↑ Odum 1996, Environmental Accounting: Energy and Environmental Decision Making, Wiley
Bibliografi
- D.H. Clark, G.J. Treloar and R. Blair (2003) 'Estimating the increasing cost of commercial buildings in Australia due to greenhouse emissions trading, in J. Yang, P.S. Brandon and A.C. Sidwell, Proceedings of The CIB 2003 International Conference on Smart and Sustainable Built Environment, Brisbane, Australia.
- R. Costanza (1979) "Embodied Energy Basis for Economic-Ecologic Systems." PhD Dissertation. Gainesville, FL: Univ. of FL. 254 pp. (CFW-79-02)
- R.H. Crawford (2005) "Validation of the Use of Input-Output Data for Embodied Energy Analysis of the Australian Construction Industry", Journal of Construction Research, Vol. 6, No. 1, pp. 71-90.
- B. Hannon (1973) "The Structure of ecosystems", Journal of Theoretical Biology, 41, pp. 535-546.
- M. Lenzen (2001) "Errors in conventional and input-output-based life-cycle inventories", "Journal of Industrial Ecology", 4(4), pp. 127-148.
- M. Lenzen and G.J.Treloar (2002) 'Embodied energy in buildings: wood versus concrete-reply to Börjesson and Gustavsson, Energy Policy, Vol 30, pp. 249-244.
- W. Leontief (1966) Input-Output Economics, Oxford University Press, New York.
- J. Martinez-Alier (1990) Ecological Economics: Energy Environment and Society, Basil Blackwell Ltd, Oxford.
- P. Mirowski (1999) More Heat than Light: Economics as Social Physics, Physics as Nature's Economics, Historical Perspectives on Modern Economics, Cambridge University Press, Cambridge.
- H.T. Odum (1994) Ecological and General Systems: An Introduction to Systems Ecology, Colorado University Press, Boulder Colorado.
- D.M. Scienceman (1987) Energy and Emergy. In G. Pillet and T. Murota (eds), Environmental Economics: The Analysis of a Major Interface. Geneva: R. Leimgruber. pp. 257-276. (CFW-86-26)
- S.E. Tennenbaum (1988) Network Energy Expenditures for Subsystem Production, MS Thesis. Gainesville, FL: University of FL, 131 pp. (CFW-88-08)
- G.J. Treloar (1997) Extracting Embodied Energy Paths from Input-Output Tables: Towards an Input-Output-based Hybrid Energy Analysis Method, Economic Systems Research, Vol. 9, No. 4, pp. 375- 391.
- G.J. Treloar (1998) A comprehensive embodied energy analysis framework, Ph.D. thesis, Deakin University, Australia.
- G.J. Treloar, C. Owen and R. Fay (2001) 'Environmental assessment of rammed earth construction systems', Structural survey, Vol. 19, No. 2, pp. 99-105.
- G.J.Treloar, P.E.D.Love, G.D.Holt (2001) Using national input-output data for embodied energy analysis of individual residential buildings, Construction Management and Economics, Vol. 19, pp. 49-61.
- D.R.Weiner (2000) Models of Nature: Ecology, Conservation and Cultural Revolution in Soviet Russia, University of Pittsburgh Press, United States of America.
- G.P.Hammond and C.I.Jones (2006) Inventory of (Embodied) Carbon & Energy (ICE), Department of Mechanical Engineering, University of Bath, United Kingdom
Tautan eksternal
- Research on embodied energy at the University of Sydney, Australia
- CSIRO on embodied energy: Australia's foremost scientific institution
- Australian Greenhouse Office, Department of the Environment and Heritage
- Ben Fusaro's Env. Math. Course
- University of Bath (UK) and Circular Ecology, Embodied Energy & Carbon Material Inventory