راهروی گرم خرس بزرگ در منطقه کوهستانی فاون اسکین در جنگل ملی سن برناردینو واقع شده است. یک خانه سفارشی در ساحل شمالی دریاچه خرس بزرگ ساخته شد و مسیر رانندگی در ماه های زمستان زیر سایه خانه بود. به دلیل بارش برف و حرکت وسایل نقلیه بر روی برف، مسیر عبور و مرور با یخبندان به شدت خطرناک شد. صاحبان خانه تصمیم گرفتند برای از بین بردن برف و یخ در ماه های زمستان یک راهروی گرم نصب کنند. 2010 تکمیل شد.

راهروی گرم شده در عمل با کمک مبدل حرارتی.

طرح

The heated drive way has 2 closed loops. One loop has water the other loop has glycol (antifreeze type stuff that has a very very low freezing point). The water loop goes through a water heater or boiler and a small pump of1/2 HP pushes the hot water through a heat exchanger. Another small pump pushes the glycol through the heat exchanger but the water and glycol do not mix because they are separated by tubes or plates creating chambers. As the hot water passes through the exchanger it warms the glycol and the water gets cooled. The water and glycol continue the heating and cooling exchange until they reach the desired temperature. The warm glycol exchanges its heat with the icy concrete driveway which warms and melts the snow.

Issues

The major issue with this project was the installation of 800 ft. tube under the driveway concrete which the glycol would travel through. The issue with too much tube in one continuous loop is that it causes friction. There are two way to fix the issue, one is to install a larger pump and the other is to break the tubes into smaller 8 loops about 100 ft. long each. The project went with 8 smaller 100 ft. long loops because the home owner didn't want a larger and louder pump. Think about using your mouth as a small pump blowing water thru a garden hose. Easy to blow water out of a 25 ft hose, harder to blow water thru a 100 ft hose, impossible to blow water through 800 ft of hose! So we intercepted the tubes along one side of the driveway and broke the one loop into 8 loops of approximately 100 ft each. The 8 loops come together into a manifold just before they go into the heat exchanger.

به دلیل تلفات اصطکاکی، می توان آن را تقریباً با یک نسخه بازآرایی معادله Hazen-Williams مدل کرد: f=0.2083*(100/C)1.852*(Q1.852/d) که در آن f = کاهش پا در هد در هر 100 فوت لوله Q نرخ جریان بر حسب گالن در دقیقه، C ضریب زبری لوله و d قطر لوله بر حسب اینچ است.

بحث

این سیستم فعلی برای تامین برق به شبکه متصل است. گام بعدی برای کارآمدتر بودن این سیستم، اتصال آبگرمکن به انرژی خورشیدی یا به پمپ حرارتی برای هزینه عملیات کمتر است.

مدلی از مبدل حرارتی ساده

یک مبدل حرارتی ساده ممکن است به عنوان دو لوله مستقیم با جریان سیال در نظر گرفته شود که از نظر حرارتی به هم متصل هستند. بگذارید لوله ها با طول L برابر باشند و سیالاتی با ظرفیت گرما را حمل کنندسیمن{\displaystyle C_{i}}{\displaystyle C_{i}}  (energy per unit mass per unit change in temperature) and let the mass flow rate of the fluids through the pipes be ji{\displaystyle j_{i}}{\displaystyle j_{i}}  (mass per unit time), where the subscript i applies to pipe 1 or pipe 2.

Temperature profiles for the pipes are T1(x){\displaystyle T_{1}(x)}{\displaystyle T_{1}(x)}  and T2(x){\displaystyle T_{2}(x)}{\displaystyle T_{2}(x)}  where x is the distance along the pipe. Assume a steady state, so that the temperature profiles are not functions of time. Assume also that the only transfer of heat from a small volume of fluid in one pipe is to the fluid element in the other pipe at the same position, i.e., there is no transfer of heat along a pipe due to temperature differences in that pipe. By Newton's law of cooling the rate of change in energy of a small volume of fluid is proportional to the difference in temperatures between it and the corresponding element in the other pipe:

du1dt=γ(T2−T1){\displaystyle {\frac {du_{1}}{dt}}=\gamma (T_{2}-T_{1})}{\displaystyle {\frac {du_{1}}{dt}}=\gamma (T_{2}-T_{1})} 
du2dt=γ(T1−T2){\displaystyle {\frac {du_{2}}{dt}}=\gamma (T_{1}-T_{2})}{\displaystyle {\frac {du_{2}}{dt}}=\gamma (T_{1}-T_{2})} 

where ui(x){\displaystyle u_{i}(x)}{\displaystyle u_{i}(x)}  is the thermal energy per unit length and γ is the thermal connection constant per unit length between the two pipes. This change in internal energy results in a change in the temperature of the fluid element. The time rate of change for the fluid element being carried along by the flow is:

du1dt=J1dT1dx{\displaystyle {\frac {du_{1}}{dt}}=J_{1}{\frac {dT_{1}}{dx}}}{\displaystyle {\frac {du_{1}}{dt}}=J_{1}{\frac {dT_{1}}{dx}}} 
du2dt=J2dT2dx{\displaystyle {\frac {du_{2}}{dt}}=J_{2}{\frac {dT_{2}}{dx}}}{\displaystyle {\frac {du_{2}}{dt}}=J_{2}{\frac {dT_{2}}{dx}}} 

where Ji=Ciji{\displaystyle J_{i}={C_{i}}{j_{i}}}{\displaystyle J_{i}={C_{i}}{j_{i}}}  is the "thermal mass flow rate". The differential equations governing the heat exchanger may now be written as:

J1∂T1∂x=γ(T2−T1){\displaystyle J_{1}{\frac {\partial T_{1}}{\partial x}}=\gamma (T_{2}-T_{1})}{\displaystyle J_{1}{\frac {\partial T_{1}}{\partial x}}=\gamma (T_{2}-T_{1})} 
J2∂T2∂x=γ(T1−T2).{\displaystyle J_{2}{\frac {\partial T_{2}}{\partial x}}=\gamma (T_{1}-T_{2}).}{\displaystyle J_{2}{\frac {\partial T_{2}}{\partial x}}=\gamma (T_{1}-T_{2}).} 

Note that, since the system is in a steady state, there are no partial derivatives of temperature with respect to time, and since there is no heat transfer along the pipe, there are no second derivatives in x as is found in the heat equation. These two coupled first-order differential equations may be solved to yield:

T1=A−Bk1ke−kx{\displaystyle T_{1}=A-{\frac {Bk_{1}}{k}}\,e^{-kx}}{\displaystyle T_{1}=A-{\frac {Bk_{1}}{k}}\,e^{-kx}} 
T2=A+Bk2ke−kx{\displaystyle T_{2}=A+{\frac {Bk_{2}}{k}}\,e^{-kx}}{\displaystyle T_{2}=A+{\frac {Bk_{2}}{k}}\,e^{-kx}} 

where k1=γ/J1{\displaystyle k_{1}=\gamma /J_{1}}{\displaystyle k_{1}=\gamma /J_{1}} , k2=γ/J2{\displaystyle k_{2}=\gamma /J_{2}}{\displaystyle k_{2}=\gamma /J_{2}} , k=k1+k2{\displaystyle k=k_{1}+k_{2}}{\displaystyle k=k_{1}+k_{2}}  and A and B are two as yet undetermined constants of integration. Let T10{\displaystyle T_{10}}{\displaystyle T_{10}}  and T20{\displaystyle T_{20}}{\displaystyle T_{20}}  be the temperatures at x=0 and let T1L{\displaystyle T_{1L}}{\displaystyle T_{1L}}  and T2L{\displaystyle T_{2L}}{\displaystyle T_{2L}}  be the temperatures at the end of the pipe at x=L. Define the average temperatures in each pipe as:

T¯1=1L∫0LT1(x)dx{\displaystyle {\overline {T}}_{1}={\frac {1}{L}}\int _{0}^{L}T_{1}(x)dx}{\displaystyle {\overline {T}}_{1}={\frac {1}{L}}\int _{0}^{L}T_{1}(x)dx} 
T¯2=1L∫0LT2(x)dx.{\displaystyle {\overline {T}}_{2}={\frac {1}{L}}\int _{0}^{L}T_{2}(x)dx.}{\displaystyle {\overline {T}}_{2}={\frac {1}{L}}\int _{0}^{L}T_{2}(x)dx.} 

Using the solutions above, these temperatures are:

T10=A−Bk1k{\displaystyle T_{10}=A-{\frac {Bk_{1}}{k}}}{\displaystyle T_{10}=A-{\frac {Bk_{1}}{k}}} T20=A+Bk2k{\displaystyle T_{20}=A+{\frac {Bk_{2}}{k}}}{\displaystyle T_{20}=A+{\frac {Bk_{2}}{k}}} 
T1L=A−Bk1ke−kL{\displaystyle T_{1L}=A-{\frac {Bk_{1}}{k}}e^{-kL}}{\displaystyle T_{1L}=A-{\frac {Bk_{1}}{k}}e^{-kL}} T2L=A+Bk2ke−kL{\displaystyle T_{2L}=A+{\frac {Bk_{2}}{k}}e^{-kL}}{\displaystyle T_{2L}=A+{\frac {Bk_{2}}{k}}e^{-kL}} 
T¯1=A−Bk1k2L(1−e−kL){\displaystyle {\overline {T}}_{1}=A-{\frac {Bk_{1}}{k^{2}L}}(1-e^{-kL})}{\displaystyle {\overline {T}}_{1}=A-{\frac {Bk_{1}}{k^{2}L}}(1-e^{-kL})}         T¯2=A+Bk2k2L(1−e−kL).{\displaystyle {\overline {T}}_{2}=A+{\frac {Bk_{2}}{k^{2}L}}(1-e^{-kL}).}{\displaystyle {\overline {T}}_{2}=A+{\frac {Bk_{2}}{k^{2}L}}(1-e^{-kL}).} 

Choosing any two of the temperatures above eliminates the constants of integration, letting us find the other four temperatures. We find the total energy transferred by integrating the expressions for the time rate of change of internal energy per unit length:

dU1dt=∫0Ldu1dtdx=J1(T1L−T10)=γL(T¯2−T¯1){\displaystyle {\frac {dU_{1}}{dt}}=\int _{0}^{L}{\frac {du_{1}}{dt}}\,dx=J_{1}(T_{1L}-T_{10})=\gamma L({\overline {T}}_{2}-{\overline {T}}_{1})}{\displaystyle {\frac {dU_{1}}{dt}}=\int _{0}^{L}{\frac {du_{1}}{dt}}\,dx=J_{1}(T_{1L}-T_{10})=\gamma L({\overline {T}}_{2}-{\overline {T}}_{1})} 
dU2dt=∫0Ldu2dtdx=J2(T2L−T20)=γL(T¯1−T¯2).{\displaystyle {\frac {dU_{2}}{dt}}=\int _{0}^{L}{\frac {du_{2}}{dt}}\,dx=J_{2}(T_{2L}-T_{20})=\gamma L({\overline {T}}_{1}-{\overline {T}}_{2}).}{\displaystyle {\frac {dU_{2}}{dt}}=\int _{0}^{L}{\frac {du_{2}}{dt}}\,dx=J_{2}(T_{2L}-T_{20})=\gamma L({\overline {T}}_{1}-{\overline {T}}_{2}).} 

By the conservation of energy, the sum of the two energies is zero. The quantity T¯2−T¯1{\displaystyle {\overline {T}}_{2}-{\overline {T}}_{1}}{\displaystyle {\overline {T}}_{2}-{\overline {T}}_{1}} به عنوان اختلاف میانگین دمای ورود به سیستم شناخته می شود و معیاری برای کارایی مبدل حرارتی در انتقال انرژی گرمایی است.

نتیجه گیری

پیمانکاری استخدام کنید که می داند چه کار می کند. پیمانکاری که برای اولین بار این سیستم را نصب کرد تکالیف خود را انجام نداد و لوله های زیادی را در زیر راهرو نصب کرد. و دومین پیمانکار آگاه تر باید بعد از ریختن بتن وارد می شد و مجبور بود بخشی از راهروی کاملاً جدید را برای دسترسی به لوله ها به نمایش بگذارد تا آنها را به طول مناسب و به 8 حلقه جدید برش دهد. سپس مجبور به تعمیر راهروی بتنی شد.

همچنین ببینید

مبدل حرارتی

مبدل حرارتی باله ای صفحه ای

طرح

[1]

Cookies help us deliver our services. By using our services, you agree to our use of cookies.