Get our free book (in Spanish or English) on rainwater now - To Catch the Rain.

Alternative Fuels

From Appropedia
Jump to: navigation, search
Sample photo caption.
This paper focuses on the alternative fuel technology available for substitution in lieu of gasoline in the NYC metropolitan area and the implementation of alternative fuel technology.


There are several driving factors for alternative and sustainable transportation such as social, economic, and environmental factors. The primary social driving factor is that disadvantaged communities need sustainable transportation for upward mobility. Healthcare, education, and recreational facilities are often located away from the disadvantaged communities (Environmental Protection Agency , August 2011). The most important of these factors is education, which the U.S. Bureau of Labor Statistics have shown directly correlates to salary compensation (U.S. Bureau of Labor Statistics, 2013). In New York City, there are several different modes of transportation. Affordable mass transit such as buses, subways, and railroads enable people to be transported in New York City at a reduced carbon footprint compared to other urbanized regions.

This paper focuses on alternative fuel sources and corresponding carbon dioxide emissions affecting the New York metropolitan area. “Compared to the average American, residents of the MTA region produce 43 percent less CO2 emissions and, thanks to the density of high-value services, enjoy a per capita GDP that is 30 percent higher than the average for U.S. metro areas” (Metropolitan Transportation Authority, February 2009). The EPA recommends future cities to be rezoned for mixed use and to be densely built to enable a transportation system such as in New York City. Also, the MTA is working on a plan to have all buses and subways within 0.4 miles walking distance of all residential neighborhoods to promote the use of mass transit. Since New York City is subjected to the highest congestion and longest commutes, we need to find alternative ways to reduce the carbon dioxide emissions that we do produce.

“On a global scale, the looming threat of climate change has focused attention to the environmental impacts of the transportation sector, which contributes more than 25 percent of our nation’s greenhouse gas (GHG) emissions. CO2 is the primary greenhouse gas emitted by transportation, accounting for 95 percent of transportation’s impact on climate change. In gasoline-powered vehicles, CO2 emissions are nearly directly proportional to the amount of fuel burned” (Environmental Protection Agency , August 2011). The majority of fuel burned in the transportation sector is comprised of natural gas and petroleum.


The transportation sector contributes to greenhouse gases, primarily carbon dioxide emissions, through commuting, deliveries, and recreational use. The average national travel time conducted by the U.S. Census Bureau from 2000 to 2010 was 25.5 minutes for commuting. New York City metro area exceeded the average national travel time at 34.9 minutes. 79.9 percent of all commuters drove alone, compared to 81.5 percent who had normal commutes and 61.1 percent who had long commutes as indicated in Figure 1 – U.S. Census Bureau, 2011 American Community Survey, Commute Mode by Long Commute Status: 2011Commute Status: 2011. The U.S. Census Bureau defined “long commute” as a commute that exceeded 60 minutes in one direction. New York State shows the highest rate of “long commutes” at 16.2 percent, followed by Maryland and New Jersey at 14.8 and 14.6 percent, respectively (U.S. Census Bureau, February 2013).

“Even though more than two-thirds of the workforce is composed of New Yorkers, Manhattan has the largest share of “extreme commuters” among its workforce of any county in the nation. The U.S. Census Bureau defines an “extreme commuter” as any individual who travels more than 90 minutes one-way to work on a regular basis, and a 2005 study revealed that residents of counties in the New York metropolitan area were among the likeliest in the entire nation to be “extreme commuters” (NYU Wagner School of Public Service, March 2012).” Given the attached chart in Figure 2 – U.S. Census Bureau, Commuters to Manhattan in 2009 showing the influx of personnel working in Manhattan, we need to improve transit systems to Manhattan. We need to make transit systems that enter midtown Manhattan in the normal commute time of under thirty (30) minutes from the outer lying areas such as North Jersey and Western Connecticut, where the “long” and “extreme” commuters are primarily located. We need to invest in high speed trains, railroads, and select bus services that are environmentally friendly.

The statistics of the overwhelming majority of the population drives to work alone needs to be considered when implementing carbon dioxide reduction goals. Carbon reduction goals need to be focused on single occupancy vehicles. An SUV vehicle or a compact car releases the most carbon dioxide emissions per person when compared to other alternative transportation such as subway, bus, or railroad. Figure 3 – Carbon Dioxide Produced per Passenger Mile of Transportation Alternatives shows the carbon dioxide emissions produced by different transportation alternatives.

“A regional mode shift from automobiles to transit yields economic and environmental benefits at many levels. For example, the CO2 emissions from transit ridership are about one-fifth of those produced by single occupancy automobiles, as measured on a per-passenger-mile basis. Thus, in addition to overall fuel efficiency, the shift from automobiles to transit means an 80 percent rate of carbon avoidance. Since transportation accounts for nearly 40 percent of GHG emissions in the U.S., the greening of the nation’s largest transit system has significant value, both directly and as an infrastructure model for other urban areas. As it continues to quantify its carbon avoidance rates, the MTA will also be well positioned for emerging carbon trade markets and carbon based funding criteria” (Metropolitan Transportation Authority, February 2009)


Next level heading[edit]

You may need deeper level headings. Just keep adding equal signs to get that.


You may describe your costs here.

header 1 header 2 header 3
row 1, cell 1 row 1, cell 2 row 1, cell 3
row 2, cell 1 row 2, cell 2 row 2, cell 3

See Help:Tables and Help:Table examples for more.


Your discussion.

Next steps[edit]

The next steps.


Your conclusions.


Contact details[edit]

Add your contact information.