Quick Introduction to OpenSCAD

Joshua M. Pearce

Department of Materials Science & Engineering and Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI, USA

OpenSCAD The Programmers Solid 3D CAD Modeller

Make Everything Parametric

Allows later scaling, changing and newbie customization

All numbers should be made variables

- Can use letters for simple designs // **but comment**
- -advantages: simple equations
- -disadvantage: big memory for large projects

Can use variable names describing it // box_length

- -advantages: no comments, can read the code in English
- -disadvantage: big messy equations

Design Using Primitive Shapes and Collecting Together

Simple \rightarrow Complex

When Designing: Show Axes

Primitive Objects

cube([a,b,c], center=true);
sphere(a, \$fn=c);
//\$fn is the resolution

cylinder(h = c, r1 = b, r2 = a, center = true);

Union Combining Primitives

"Try before you Buy"=% union(){ %cube([a,b,c], center=true); sphere(a, \$fn=c);

Difference - Subtraction

difference(){
cube([a,b,c], center=true);
sphere(a, \$fn=c);

Hull: Convex Hull of Child Nodes

hull(){
cube([a,b,c], center=true);
sphere(a, \$fn=c);

Translate: Moving Stuff Around

union(){
cube([a,b,c], center=true);
translate([0,0,b])sphere(a, \$fn=c);
}

Rounded Corners: Minkowski

\$fn=50; minkowski() { cube([10,10,2]); // rounded corners cylinder(r=2,h=2); Minkowski sums allow to add every element of A to every element of B.

Hand Crafting: Polyhydron

Intersection : Keeps All Portions That Overlap

intersection() {

cylinder (h = 4, r=1, center = true, \$fn=100);

rotate ([90,0,0]) cylinder (h = 4, r=0.9, center = true, \$fn=100);

Make Each Completed Component a Module

- Allows for more complex design
- Clears the work space as modules are not shown unless called
- Syntax:

module example(){ put your module scad here }

Call it by:

example();

Modules

module example(){
union(){
cube([a,b,c], center=true);
translate([0,0,b])sphere(a,
 \$fn=c);

example();

Manipulate Your Module

rotate([45,0,0])example();

hull() { example(); }

Add, subtract modules etc.

For Repetitive Tasks Use Loops

```
for (i = [1:12])
  assign (angle = i*30)
     rotate(angle, [1,0,0])
 example();
```


Putting it All Together to Make Something Useful

Shelling corn is a chore done by hand in much of the rural developing world. Yet there are handy corn shellers that can save people hours of labor. **DIY shellers are a big chore to make...so you can print one.**

The finished, cement-filled corn sheller is on the right. A commercial aluminum corn sheller is on the left. The bottom sheller that was cut from a PVC pipe cap. It did not perform as well as the can.

Step 1: Break Complex Object Into Simple Parts

Bucket: 2 tapered cylinders Fingers: 2 hulled cylinders Fingers tapered in

Consider improvements: Grips on outside – use fingers

Parametric – Design ALL of the Products at Once

Step 2: Lay out variables with comments to input to Customizer

//Open-source parametric hand corn sheller // height of corn sheller h=55; // radius of top of corn sheller rt=35; //[50:130] rb=0.85*rt; //radius of bottom of corn sheller //number of digits d=6; // digit radius r=1.5; // extra length of digit l=1; // thickness of sheller t=3;

Using Modules

Parametric Corn Sheller

Thingiverse Customizer

Customizable corn sheller

by jpearce

height of corn sheller	
65	
t radius of top of corn sheller 50	
number of diaits	
4	
digit radius	
2.5	
extra length of digit	
-4	
thickness of sheller	

Anyone can make a corn sheller perfect for them with no coding.

Use Past Work

Libraries:

use <MCAD/involute_gears.scad>
include <escapementLibrary.scad>

You are using collections of Modules written before...

Cheat Sheet

Syntax

var = value: nodule name(_) { _ } name(); function name(_) = _ name(): include <...scad> use <....scad>

20

circle(radius) square(size,center) square([width,height],center) polygon([points]) polygon([points],[paths])

3D

sphere(radius) cube(size) cube([width,height,depth]) cylinder(h,r,center) cylinder(h.r1,r2,center) polyhedron(points, triangles, convexity)

Transformations	Mathematical
<pre>translate([x,y,z])</pre>	abs
<pre>rotate([x,y,z])</pre>	sign
<pre>scale([x,y,z])</pre>	acos
mirror([x,y,z])	asin
nultmatrix(n)	atan
color("colorname")	atan2
color([r, g, b, a])	sin
hull()	COS
minkowski()	floor
	round
Boolean operations	ceil
union()	ln
difference()	len
intersection()	log
	lookup
Hadifian Characters	min
Mooti ter characters	max
 disable 	DOM
! show only	sqrt
# highlight	exp
% transparent	rands

http://www.openscad.org/documentation.html

Other echo(_) str(_) for (1 = [start:end]) { _ } for (i = [start:step:end]) { _ } for (i = [____]) { _ } intersection_for(i = [start:end]) { _ } intersection_for(i = [start:step:end]) { _ } intersection_for(i = [-,-,-]) { - } if $(-) \{-\}$ assign (_) { _ } search(_) import("...stl") linear_extrude(height,center,convexity,twist,slices) rotate_extrude(convexity) surface(file = "...dat",center,convexity) projection(cut) render(convexity)

Special variables

\$fa minimum angle Sfs minimum size \$fn number of fragments St animation step

Thank you!

More information

- http://www.openscad.org/
- http://en.wikibooks.org/wiki/OpenSCAD_User_Manual
- http://www.appropedia.org/MOST
- http://reprap.org/
- pearce@mtu.edu

