The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Woodprint.png
FA info icon.svg Angle down icon.svg Source data
Type Paper
Cite as Citation reference for the source document. Adam M. Pringle, Mark Rudnicki, and Joshua Pearce (2017) Wood Furniture Waste-Based Recycled 3-D Printing Filament. Forest Products Journal 2018, Vol. 68, No. 1, pp. 86-95. https://doi.org/10.13073/FPJ-D-17-00042 open access

The Michigan furniture industry produces >150 tons/day of wood-based waste, which can be upcycled into a wood polymer composite (WPC). This study investigates the viability of using furniture waste as a feedstock for 3-D printer filament to produce furniture components. The process involves: grinding/milling board scraps made of both LDF/MDF/LDF and melamine/particleboard/paper impregnated with phenolic resins; pre-mixing wood-based powder with the biopolymer poly lactic acid (PLA), extruding twice through open-source recyclebots to fabricate homogeneous 3-D printable WPC filament, and printing with open source FFF-based 3-D printers. The results indicate there is a significant opportunity for waste-based composite WPCs to be used as 3-D printing filament.

Keywords

distributed manufacturing]]; recycling; recyclebot; 3-D printing; polymer filament; wood; wood waste

Post Process

Wood Filament Suppliers

See also

RepRapable Recyclebot and the Wild West of Recycling

mqdefault.jpgYouTube_icon.svg
mqdefault.jpgYouTube_icon.svg

Recycling Technology

Distributed Recycling LCA

Literature Reviews

Gigarecycle.png

Externals

  • Economist article on U. of Washington's HDPE boat, Oprn3dp.me
  • https://ultimaker.com/en/resources/52444-ocean-plastic-community-project
  • Another possible solution - reusable containers [1]
  • Commercial https://dyzedesign.com/pulsar-pellet-extruder/
  • ---
  • Cruz, F., Lanza, S., Boudaoud, H., Hoppe, S., & Camargo, M. Polymer Recycling and Additive Manufacturing in an Open Source context: Optimization of processes and methods. [2]
  • Investigating Material Degradation through the Recycling of PLA in Additively Manufactured Parts
  • Mohammed, M.I., Das, A., Gomez-Kervin, E., Wilson, D. and Gibson, I., EcoPrinting: Investigating the use of 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing.
  • Kariz, M., Sernek, M., Obućina, M. and Kuzman, M.K., 2017. Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications. [3]
  • Kaynak, B., Spoerk, M., Shirole, A., Ziegler, W. and Sapkota, J., 2018. Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing. Macromolecular Materials and Engineering, p.1800037. [4]
  • O. Martikka et al., "Mechanical Properties of 3D-Printed Wood-Plastic Composites", Key Engineering Materials, Vol. 777, pp. 499-507, 2018 [5]
  • Yang, T.C., 2018. Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers, 10(9), p.976. [6]
  • Romani, A., Rognoli, V., & Levi, M. (2021). Design, Materials, and Extrusion-Based Additive Manufacturing in Circular Economy Contexts: From Waste to New Products. Sustainability, 13(13), 7269. https://www.mdpi.com/2071-1050/13/13/7269/pdf

Literature Reviews

In the media

FA info icon.svg Angle down icon.svg Page data
Keywords wood
Authors Joshua M. Pearce
License CC-BY-SA-3.0
Language English (en)
Translations French
Related 1 subpages, 45 pages link here
Impact 1,223 page views
Created November 14, 2017 by Joshua M. Pearce
Modified October 23, 2023 by StandardWikitext bot
Cookies help us deliver our services. By using our services, you agree to our use of cookies.