No edit summary
No edit summary
Line 116: Line 116:
*Atomic layer deposition of hafnium oxide thin films from tetrakis (dimethylamino) hafnium (TDMAH) and ozone
*Atomic layer deposition of hafnium oxide thin films from tetrakis (dimethylamino) hafnium (TDMAH) and ozone
Liu, X., Ramanathan, S. and Seidel, T.E., 2003. Atomic layer deposition of hafnium oxide thin films from tetrakis (dimethylamino) hafnium (TDMAH) and ozone. MRS Online Proceedings Library Archive, 765.
Liu, X., Ramanathan, S. and Seidel, T.E., 2003. Atomic layer deposition of hafnium oxide thin films from tetrakis (dimethylamino) hafnium (TDMAH) and ozone. MRS Online Proceedings Library Archive, 765.
==Valve Operation==
Needle valves are controlled using stepper motors and Arduino microcontroller.
<pre>
#include <AccelStepper.h>
// Define a stepper
AccelStepper stepperA(AccelStepper::DRIVER, 8, 9);
AccelStepper stepperB(AccelStepper::DRIVER, 7, 6);
/*open valve completely 9 ful revolution
motor has to go to this position
in order for the valve to do 9 full rotations*/
int pos =900;//valve is totally close at 0 and totally open at 900
int Stage= 1;
void setup()
  stepperA.setMaxSpeed(800);//Define how fast the motor turns
  stepperA.setAcceleration(30000);
  stepperB.setMaxSpeed(800);
  stepperB.setAcceleration(30000);
  pinMode(3,INPUT);//push buttom input
}
void loop()
{
  if (digitalRead(3)==LOW && Stage == 1 && (stepperA.distanceToGo() == 0))
    {
      Stage = 2;
    }
  if(Stage == 2)
    {
      pos = -pos;
      stepperA.moveTo(pos);
      stepperA.run();
      /* Delay (ms)= Waiting time for the valve start closing*/
      delay(5000);
      Stage = 3;
    }
     
  if (Stage == 3 && (stepperA.distanceToGo() == 900))
    {
      Stage = 4;
    }
    if(Stage == 4)
    {
      pos = -pos;
      stepperA.moveTo(pos);
      stepperA.run();
      /* Delay (ms)= Waiting time for the second valve start opening*/
      delay(10000);
      Stage = 5;
    }
  if (Stage == 5 && (stepperB.distanceToGo() == 0))
    {
      Stage = 6;
    }
      if(Stage == 6)
      {
      pos = -pos;
      stepperB.moveTo(pos);
      stepperB.run();
      /* Delay (ms)= Waiting time for the second valve start closing*/
      delay(5000);
      Stage = 7;
      }
    if (Stage == 7 && (stepperB.distanceToGo() == 900))
      {
      Stage = 8;
      }
      if(Stage == 8)
      {
      pos = -pos;
      stepperB.moveTo(pos);
      stepperB.run();
      Stage = 1;
      }
}
</pre>

Revision as of 17:27, 20 October 2017

Hardware:

Precursor vaporizer

  1. Crucible : This holds a pre measured quantity of precursor
  2. Crucible lid: This screws onto the crucible and ends in a barb fitting, connecting the crucible to the tubing that carries PC gas to the mixing chamber
  3. Hot plate: The crucible is placed on the hot plate to heat it to specified temperature
  4. Nitrogen bottle with regulator: Purge gas

Tubing, fittings and valves

  1. Tubing: Chemically inert polypropylene tubing is used
  2. Ball valve: Used as a shutoff valve to start and stop flow of gas
  3. Needle valve: Used to regulate flow of gas

Chambers

  1. Mixing chamber: This heated chamber has three inlets (PC1, PC2 and Purge) and one outlet (to deposition chamber). Having this chamber ensures gases are mixed before they reach the deposition chamber.
  2. Deposition chamber: This chamber has one inlet (from mixing chamber) and one outlet (to pump). The substrate is placed here and the entire chamber is heated to a suitable temperature.

Pump and accessories

  1. Oil based rotary vane mechanical pump: This brings down the pressure in the chamber to 8mTorr.
  2. Particle filter: This protects the pump oil from contamination.

Hot Box

  1. Steel tube
  2. Nichrome wire
  3. Temperature controller and sensor
  4. Insulation

Literature

  • Atomic layer deposition: an overview

George, S.M., 2010. Atomic layer deposition: an overview. Chem. Rev, 110(1), pp.111-131.

  • Synthesis and surface engineering of complex nanostructures by atomic layer deposition

Knez, M., Nielsch, K. and Niinistö, L., 2007. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials, 19(21), pp.3425-3438.

  • Applications of atomic layer deposition to nanofabrication and emerging nanodevices

Kim, H. and Maeng, W.J., 2009. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 517(8), pp.2563-2580.

  • Nucleation and growth during Al2O3 atomic layer deposition on polymers

Wilson, C.A., Grubbs, R.K. and George, S.M., 2005. Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chemistry of Materials, 17(23), pp.5625-5634.

  • Mechanism of Metal Oxide Deposition from Atomic Layer Deposition inside Nonreactive Polymer Matrices: Effects of Polymer Crystallinity and Temperature

Obuchovsky, S., Frankenstein, H., Vinokur, J., Hailey, A.K., Loo, Y.L. and Frey, G.L., 2016. Mechanism of metal oxide deposition from atomic layer deposition inside nonreactive polymer matrices: effects of polymer crystallinity and temperature. Chemistry of Materials, 28(8), pp.2668-2676.

  • Surface Modification of Polymers by Reaction of Alkyl Radicals

Hetemi, D., Médard, J., Kanoufi, F., Combellas, C., Pinson, J. and Podvorica, F.I., 2016. Surface Modification of Polymers by Reaction of Alkyl Radicals. Langmuir, 32(2), pp.512-518.

  • Effect of Polymer Microstructure on the Nucleation Behavior of Alumina via Atomic Layer Deposition

Padbury, R.P. and Jur, J.S., 2014. Effect of polymer microstructure on the nucleation behavior of alumina via atomic layer deposition. The Journal of Physical Chemistry C, 118(32), pp.18805-18813.

  • Sequential Vapor Infiltration of Metal Oxides into Sacrificial Polyester Fibers: Shape Replication and Controlled Porosity of Microporous/Mesoporous Oxide Monoliths

Gong, B., Peng, Q., Jur, J.S., Devine, C.K., Lee, K. and Parsons, G.N., 2011. Sequential vapor infiltration of metal oxides into sacrificial polyester fibers: shape replication and controlled porosity of microporous/mesoporous oxide monoliths. Chemistry of Materials, 23(15), pp.3476-3485.

  • Protecting Polymers in Space with Atomic Layer Deposition Coatings

Minton, T.K., Wu, B., Zhang, J., Lindholm, N.F., Abdulagatov, A.I., O’Patchen, J., George, S.M. and Groner, M.D., 2010. Protecting polymers in space with atomic layer deposition coatings. ACS applied materials & interfaces, 2(9), pp.2515-2520.

  • Mechanically robust antireflective coatings

Khan, S.B., Wu, H., Huai, X., Zou, S., Liu, Y. and Zhang, Z., Mechanically robust antireflective coatings. Nano Research, pp.1-15.

  • Near room-temperature direct encapsulation of organic photovoltaics by plasma-based deposition techniques

Perrotta, A., Fuentes-Hernandez, C., Khan, T.M., Kippelen, B., Creatore, M. and Graham, S., 2016. Near room-temperature direct encapsulation of organic photovoltaics by plasma-based deposition techniques. Journal of Physics D: Applied Physics, 50(2), p.024003.

  • Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges

Zardetto, V., Williams, B.L., Perrotta, A., Di Giacomo, F., Verheijen, M.A., Andriessen, R., Kessels, W.M.M. and Creatore, M., 2017. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy & Fuels, 1(1), pp.30-55.

  • Recent progress of atomic layer deposition on polymeric materials

Guo, H.C., Ye, E., Li, Z., Han, M.Y. and Loh, X.J., 2017. Recent progress of atomic layer deposition on polymeric materials. Materials Science and Engineering: C, 70, pp.1182-1191.

  • Chemical Protection of Polycarbonate Surfaces by Atomic Layer Deposition of Alumina with Oxygen Plasma Pretreatment

Park, S.W., Bae, K., Kim, J.W., Lee, G.B., Choi, B.H., Lee, M.H. and Shim, J.H., 2016. Chemical Protection of Polycarbonate Surfaces by Atomic Layer Deposition of Alumina with Oxygen Plasma Pretreatment. Advanced Materials Interfaces, 3(21).

  • Atomic layer deposition of HfO2 on graphene through controlled ion beam treatment

Kim, K.S., Oh, I.K., Jung, H., Kim, H., Yeom, G.Y. and Kim, K.N., 2016. Atomic layer deposition of HfO2 on graphene through controlled ion beam treatment. Applied Physics Letters, 108(21), p.213102.

  • Hybrid nanomaterials through molecular and atomic layer deposition: Top down, bottom up, and in-between approaches to new materials

Gregorczyk, K. and Knez, M., 2016. Hybrid nanomaterials through molecular and atomic layer deposition: Top down, bottom up, and in-between approaches to new materials. Progress in Materials Science, 75, pp.1-37.

  • Mechanical properties of atomic layer deposited Al2O3/ZnO nanolaminates

Homola, T., Buršíková, V., Ivanova, T.V., Souček, P., Maydannik, P.S., Cameron, D.C. and Lackner, J.M., 2015. Mechanical properties of atomic layer deposited Al 2 O 3/ZnO nanolaminates. Surface and Coatings Technology, 284, pp.198-205.

  • Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties

Palmstrom, A.F., Santra, P.K. and Bent, S.F., 2015. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. Nanoscale, 7(29), pp.12266-12283.

  • A hybrid life cycle assessment of atomic layer deposition process

Wang, E. and Yuan, C., 2014. A hybrid life cycle assessment of atomic layer deposition process. Journal of cleaner production, 74, pp.145-154.

  • Atomic Layer Deposition (Chapter 4 only)

Ritala, M. and Niinistö, J., 2009. Atomic layer deposition. Chemical Vapor Deposition: Precursors, Processes and Application, pp.158-206.

  • Transparent Conductive Gas-Permeation Barriers on Plastics by Atomic Layer Deposition

Chou, C.T., Yu, P.W., Tseng, M.H., Hsu, C.C., Shyue, J.J., Wang, C.C. and Tsai, F.Y., 2013. Transparent Conductive Gas‐Permeation Barriers on Plastics by Atomic Layer Deposition. Advanced Materials, 25(12), pp.1750-1754.

  • Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends

Miikkulainen, V., Leskelä, M., Ritala, M. and Puurunen, R.L., 2013. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. Journal of Applied Physics, 113(2), p.2.

  • Growth of thin Al2O3 films on biaxially oriented polymer films by atomic layer deposition

Vähä-Nissi, M., Kauppi, E., Sahagian, K., Johansson, L.S., Peresin, M.S., Sievänen, J. and Harlin, A., 2012. Growth of thin Al 2 O 3 films on biaxially oriented polymer films by atomic layer deposition. Thin Solid Films, 522, pp.50-57.

  • Diffusion phenomena in atomic layer deposition

Knez, M., 2012. Diffusion phenomena in atomic layer deposition. Semiconductor Science and Technology, 27(7), p.074001.

  • Progress and future directions for atomic layer deposition and ALD-based chemistry

Parsons, G.N., George, S.M. and Knez, M., 2011. Progress and future directions for atomic layer deposition and ALD-based chemistry. Mrs Bulletin, 36(11), pp.865-871.

  • Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties

Kääriäinen, T.O., Maydannik, P., Cameron, D.C., Lahtinen, K., Johansson, P. and Kuusipalo, J., 2011. Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties. Thin Solid Films, 519(10), pp.3146-3154.

  • Growth and interface of HfO 2 films on H-terminated Si from a TDMAH and H 2 O atomic layer deposition process

Hackley, J.C., Demaree, J.D. and Gougousi, T., 2008. Growth and interface of HfO 2 films on H-terminated Si from a TDMAH and H 2 O atomic layer deposition process. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 26(5), pp.1235-1240.

  • Atomic layer deposition of hafnium oxide from tert-butoxytris (ethylmethylamido) hafnium and ozone: rapid growth, high density and thermal stability

Seo, M., Min, Y.S., Kim, S.K., Park, T.J., Kim, J.H., Na, K.D. and Hwang, C.S., 2008. Atomic layer deposition of hafnium oxide from tert-butoxytris (ethylmethylamido) hafnium and ozone: rapid growth, high density and thermal stability. Journal of Materials Chemistry, 18(36), pp.4324-4331.

  • Atomic layer deposition of hafnium oxide thin films from tetrakis (dimethylamino) hafnium (TDMAH) and ozone

Liu, X., Ramanathan, S. and Seidel, T.E., 2003. Atomic layer deposition of hafnium oxide thin films from tetrakis (dimethylamino) hafnium (TDMAH) and ozone. MRS Online Proceedings Library Archive, 765.

Valve Operation

Needle valves are controlled using stepper motors and Arduino microcontroller.

#include <AccelStepper.h>

// Define a stepper
AccelStepper stepperA(AccelStepper::DRIVER, 8, 9);
AccelStepper stepperB(AccelStepper::DRIVER, 7, 6);

/*open valve completely 9 ful revolution
motor has to go to this position 
in order for the valve to do 9 full rotations*/

int pos =900;//valve is totally close at 0 and totally open at 900
int Stage= 1;

void setup()
{  
  stepperA.setMaxSpeed(800);//Define how fast the motor turns
  stepperA.setAcceleration(30000);
  stepperB.setMaxSpeed(800);
  stepperB.setAcceleration(30000);
  pinMode(3,INPUT);//push buttom input 

}

void loop()
{
  if (digitalRead(3)==LOW && Stage == 1 && (stepperA.distanceToGo() == 0))
    {
      Stage = 2;
    }
  if(Stage == 2)
    { 
      pos = -pos;
      stepperA.moveTo(pos);
      stepperA.run();

      /* Delay (ms)= Waiting time for the valve start closing*/
      delay(5000);
      Stage = 3;
     }
      
   if (Stage == 3 && (stepperA.distanceToGo() == 900))
     {
      Stage = 4;
     }
    if(Stage == 4)
     {
      pos = -pos;
      stepperA.moveTo(pos);
      stepperA.run();

      /* Delay (ms)= Waiting time for the second valve start opening*/
      delay(10000);
      Stage = 5;
     }
   if (Stage == 5 && (stepperB.distanceToGo() == 0))
     {
      Stage = 6;
     }
      if(Stage == 6)
      {
      pos = -pos;
      stepperB.moveTo(pos);
      stepperB.run();
      /* Delay (ms)= Waiting time for the second valve start closing*/
      delay(5000);
      Stage = 7;
      }
    if (Stage == 7 && (stepperB.distanceToGo() == 900))
      {
      Stage = 8;
      }
      if(Stage == 8)
      {
      pos = -pos;
      stepperB.moveTo(pos);
      stepperB.run();
      Stage = 1;
      }
 
}
Cookies help us deliver our services. By using our services, you agree to our use of cookies.