(4 intermediate revisions by the same user not shown)
Line 23: Line 23:
This idea of concentrating sun's rays date back to 212 B.C.The famous Greek inventor Archimedes used mirrors, later called as [http://www.unmuseum.org/burning_mirror.htm burning mirrors], to set enemy ships at blaze. Concentrators/reflectors use principles of optics (focal point) to concentrate sunlight onto Solar cells.
This idea of concentrating sun's rays date back to 212 B.C.The famous Greek inventor Archimedes used mirrors, later called as [http://www.unmuseum.org/burning_mirror.htm burning mirrors], to set enemy ships at blaze. Concentrators/reflectors use principles of optics (focal point) to concentrate sunlight onto Solar cells.


[http://www.sciencedirect.com/science/article/pii/0038092X71900016 K. G. T. Hollands, “A concentrator for thin-film solar cells,” Solar Energy, vol. 13, no. 2, pp. 149–163, May 1971. doi: 10.1016/0038-092X(71)90001-6]
1. [http://www.sciencedirect.com/science/article/pii/0038092X71900016 K. G. T. Hollands, “A concentrator for thin-film solar cells,” Solar Energy, vol. 13, no. 2, pp. 149–163, May 1971. doi: 10.1016/0038-092X(71)90001-6]
*
*
*
*


[http://www.nrel.gov/docs/fy15osti/63196.pdf D. A. W. B. Dr. Simon P. Philipps and D. S. K. Kelsey Horowitz, “Current Status of Concentrator Photovoltaic (CPV) Technology,” Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany & National Renewable Energy Laboratory NREL in Golden, Colorado, USA, TP-6A20-63916, Sep. 2015.]
2. [http://www.nrel.gov/docs/fy15osti/63196.pdf D. A. W. B. Dr. Simon P. Philipps and D. S. K. Kelsey Horowitz, “Current Status of Concentrator Photovoltaic (CPV) Technology,” Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany & National Renewable Energy Laboratory NREL in Golden, Colorado, USA, TP-6A20-63916, Sep. 2015.]
*
*
*
*
Line 84: Line 84:


==Tracking Systems==
==Tracking Systems==
1. [http://www.sciencedirect.com/science/article/pii/096014819290104B A. K. Agarwal, “Two axis tracking system for solar concentrators,” Renewable Energy, vol. 2, no. 2, pp. 181–182, Apr. 1992. doi: 10.1016/0960-1481(92)90104-B]
*
*
2. [http://www.sciencedirect.com/science/article/pii/0038092X94904855 B. Perers, B. Karlsson, and M. Bergkvist, “Intensity distribution in the collector plane from structured booster reflectors with rolling grooves and corrugations,” Solar Energy, vol. 53, no. 2, pp. 215–226, Aug. 1994. doi: 10.1016/0038-092X(94)90485-5]
*
*
3. [http://www.sciencedirect.com/science/article/pii/S0927024897002766 V. Poulek and M. Libra,  “New solar tracker,” Solar Energy Materials and Solar Cells, vol. 51, no. 2, pp. 113–120, Feb. 1998.doi : 10.1016/S0927-0248(97)00276-6]
*
*


[http://www.sciencedirect.com/science/article/pii/S0927024897002766 V. Poulek and M. Libra, “New solar tracker,” Solar Energy Materials and Solar Cells, vol. 51, no. 2, pp. 113–120, Feb. 1998.doi : 10.1016/S0927-0248(97)00276-6]
4. [http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-159X(199705/06)5:3%3C213::AID-PIP171%3E3.0.CO;2-7/abstract J. C. Arboiro and G. Sala, “‘Self-learning Tracking’: a New Control Strategy for PV Concentrators,” Prog. Photovolt: Res. Appl., vol. 5, no. 3, pp. 213–226, May 1997. doi: 10.1002/(SICI)1099-159X(199705/06)5:3<213::AID-PIP171>3.0.CO;2-7]
*
*
*
*


[http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-159X(199705/06)5:3%3C213::AID-PIP171%3E3.0.CO;2-7/abstract J. C. Arboiro and G. Sala, “‘Self-learning Tracking’: a New Control Strategy for PV Concentrators,” Prog. Photovolt: Res. Appl., vol. 5, no. 3, pp. 213–226, May 1997. doi: 10.1002/(SICI)1099-159X(199705/06)5:3<213::AID-PIP171>3.0.CO;2-7]
5. [http://linkinghub.elsevier.com/retrieve/pii/S1364032109000318 H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 1800–1818, Oct. 2009. doi: 10.1016/j.rser.2009.01.022]
*
*
*
*


[http://linkinghub.elsevier.com/retrieve/pii/S1364032109000318 H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 1800–1818, Oct. 2009. doi: 10.1016/j.rser.2009.01.022]
6. [http://www.mdpi.com/1424-8220/9/5/3875 C.-Y. Lee, P.-C. Chou, C.-M. Chiang, and C.-F. Lin, “Sun Tracking Systems: A Review,” Sensors, vol. 9, no. 5, pp. 3875–3890, May 2009. doi: 10.3390/s90503875]
*
*
*
*


[http://www.mdpi.com/1424-8220/9/5/3875 C.-Y. Lee, P.-C. Chou, C.-M. Chiang, and C.-F. Lin,  “Sun Tracking Systems: A Review,” Sensors, vol. 9, no. 5, pp. 3875–3890, May 2009. doi: 10.3390/s90503875]
7. [http://www.sciencedirect.com/science/article/pii/S1877050911005503 S. Ozcelik, H. Prakash, and R. Challoo, “Two-Axis Solar Tracker Analysis and Control for Maximum Power Generation,” Procedia Computer Science, vol. 6, pp. 457–462, 2011. doi: 10.1016/j.procs.2011.08.085]
*
*
*
*


[http://www.sciencedirect.com/science/article/pii/S1877050911005503 S. Ozcelik, H. Prakash, and R. Challoo, “Two-Axis Solar Tracker Analysis and Control for Maximum Power Generation,” Procedia Computer Science, vol. 6, pp. 457–462, 2011. doi: 10.1016/j.procs.2011.08.085]
8. [http://link.springer.com/article/10.3103/S0003701X11040086 S. I. Klychev, A. K. Fazylov, S. A. Orlov, and A. V. Burbo, “Design factors of sensors for the optical tracking systems of solar concentrators,” Appl. Sol. Energy, vol. 47, no. 4, pp. 321–322, Mar. 2012. doi: 10.3103/S0003701X11040086]
*
*
*
*


[http://www.sciencedirect.com/science/article/pii/S1877705813005213 P. K. Sen, K. Ashutosh, K. Bhuwanesh, Z. Engineer, S. Hegde, P. V. Sen, and P. Davies, “Linear Fresnel Mirror Solar Concentrator with Tracking,” Procedia Engineering, vol. 56, pp. 613–618, 2013. doi: 10.1016/j.proeng.2013.03.167]
9. [http://www.sciencedirect.com/science/article/pii/S1877705813005213 P. K. Sen, K. Ashutosh, K. Bhuwanesh, Z. Engineer, S. Hegde, P. V. Sen, and P. Davies, “Linear Fresnel Mirror Solar Concentrator with Tracking,” Procedia Engineering, vol. 56, pp. 613–618, 2013. doi: 10.1016/j.proeng.2013.03.167]
*
*
*
*

Revision as of 21:09, 7 February 2016

Note to Readers

Please leave any comments on the Discussion page (see tab above) including additional resources/papers/links etc. Papers can be added to relevant sections if done in chronological order with all citation information and short synopsis or abstract. Thank You.

Search List

Background

What are Concentrator photovoltaics (CPV)??

Wikipedia : Concentrator photovoltaic systems employ curved reflectors such as lenses and mirrors to focus incoming sun rays onto the solar cells to harvest solar energy with more efficiency measured as watt-peak Wp. They are often equipped with single or dual-axis solar trackers and cooling systems that promote dual-way power generation. Based on the intensities measured in number of suns, CPV systems are classified as Low concentration PV, High concentration PV, Medium concentration PV and Luminescent solar concentrators.

This idea of concentrating sun's rays date back to 212 B.C.The famous Greek inventor Archimedes used mirrors, later called as burning mirrors, to set enemy ships at blaze. Concentrators/reflectors use principles of optics (focal point) to concentrate sunlight onto Solar cells.

1. K. G. T. Hollands, “A concentrator for thin-film solar cells,” Solar Energy, vol. 13, no. 2, pp. 149–163, May 1971. doi: 10.1016/0038-092X(71)90001-6

2. D. A. W. B. Dr. Simon P. Philipps and D. S. K. Kelsey Horowitz, “Current Status of Concentrator Photovoltaic (CPV) Technology,” Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany & National Renewable Energy Laboratory NREL in Golden, Colorado, USA, TP-6A20-63916, Sep. 2015.

Advantages of Low concentration photovoltaics (LCPV)

Low concentration PV systems can be illuminated with intensities less than 20 suns [1] which can be varied up to 100 suns. LCPV systems eliminate the need of complex cooling systems and are often facilitated with booster reflectors. LCPV systems doesn't require active tracking mechanisms due to wide acceptance angles [2]. These can sufficed with single-axis tracking system yet maintaining 35-40% increased power output.

How is intensity measured?

Intensity of sunlight illuminating on PV cells are measured as 'Suns'. 'One Sun' is amount of energy drawn to an object openly exposed out on a cloudless day which is approximately 100 watts per square foot.

Concept of Reflectors

The main features of reflectors are high reflectance, low scattering and low degradation i.e., loss of reflectance over time.

B. Perers and B. Karlsson, “External reflectors for large solar collector arrays, simulation model and experimental results,” Solar Energy, vol. 51, no. 5, pp. 327–337, 1993.doi: 10.1016/0038-092X(93)90145-E

D. P. Grimmer, K. G. Zinn, K. C. Herr, and B. E. Wood, “Augmented Solar Energy Collection Using Various Planar Reflective Surfaces: Theoretical Calculations and Experimental Results,” Los Alamos Scientific Lab., N.Mex. (USA), LA-7041, Apr. 1978

S. Hess, “Stationary booster reflectors for solar thermal process heat generation,” SASEC, 2015

H. Tabor, “Stationary mirror systems for solar collectors,” Solar Energy, vol. 2, no. 3–4, pp. 27–33, Jul. 1958. doi:10.1016/0038-092X(58)90051-3

S. Hess and V. I. Hanby, “Collector Simulation Model with Dynamic Incidence Angle Modifier for Anisotropic Diffuse Irradiance,” Energy Procedia, vol. 48, pp. 87–96, 2014. doi:10.1016/j.egypro.2014.02.011

R. P. Friedman, J. M. Gordon, and H. Ries, “New high-flux two-stage optical designs for parabolic solar concentrators,” Solar Energy, vol. 51, no. 5, pp. 317–325, 1993. doi:10.1016/0038-092X(93)90144-D

Booster reflectors

H. Tanaka, “Solar thermal collector augmented by flat plate booster reflector: Optimum inclination of collector and reflector,” Applied Energy, vol. 88, no. 4, pp. 1395–1404, Apr. 2011. doi: 10.1016/j.apenergy.2010.10.032

Advantage of corrugated reflectors

M. RÖNNELID and B. KARLSSON, “THE USE OF CORRUGATED BOOSTER REFLECTORS FOR SOLAR COLLECTOR FIELDS,” Solar Energy, vol. 65, no. 6, pp. 343–351, Apr. 1999. doi:10.1016/S0038-092X(99)00009-2

B. Perers, B. Karlsson, and M. Bergkvist, “Intensity distribution in the collector plane from structured booster reflectors with rolling grooves and corrugations,” Solar Energy, vol. 53, no. 2, pp. 215–226, Aug. 1994.doi: 10.1016/0038-092X(94)90485-5

Tracking Systems

1. A. K. Agarwal, “Two axis tracking system for solar concentrators,” Renewable Energy, vol. 2, no. 2, pp. 181–182, Apr. 1992. doi: 10.1016/0960-1481(92)90104-B

2. B. Perers, B. Karlsson, and M. Bergkvist, “Intensity distribution in the collector plane from structured booster reflectors with rolling grooves and corrugations,” Solar Energy, vol. 53, no. 2, pp. 215–226, Aug. 1994. doi: 10.1016/0038-092X(94)90485-5

3. V. Poulek and M. Libra, “New solar tracker,” Solar Energy Materials and Solar Cells, vol. 51, no. 2, pp. 113–120, Feb. 1998.doi : 10.1016/S0927-0248(97)00276-6

4. J. C. Arboiro and G. Sala, “‘Self-learning Tracking’: a New Control Strategy for PV Concentrators,” Prog. Photovolt: Res. Appl., vol. 5, no. 3, pp. 213–226, May 1997. doi: 10.1002/(SICI)1099-159X(199705/06)5:3<213::AID-PIP171>3.0.CO;2-7

5. H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 1800–1818, Oct. 2009. doi: 10.1016/j.rser.2009.01.022

6. C.-Y. Lee, P.-C. Chou, C.-M. Chiang, and C.-F. Lin, “Sun Tracking Systems: A Review,” Sensors, vol. 9, no. 5, pp. 3875–3890, May 2009. doi: 10.3390/s90503875

7. S. Ozcelik, H. Prakash, and R. Challoo, “Two-Axis Solar Tracker Analysis and Control for Maximum Power Generation,” Procedia Computer Science, vol. 6, pp. 457–462, 2011. doi: 10.1016/j.procs.2011.08.085

8. S. I. Klychev, A. K. Fazylov, S. A. Orlov, and A. V. Burbo, “Design factors of sensors for the optical tracking systems of solar concentrators,” Appl. Sol. Energy, vol. 47, no. 4, pp. 321–322, Mar. 2012. doi: 10.3103/S0003701X11040086

9. P. K. Sen, K. Ashutosh, K. Bhuwanesh, Z. Engineer, S. Hegde, P. V. Sen, and P. Davies, “Linear Fresnel Mirror Solar Concentrator with Tracking,” Procedia Engineering, vol. 56, pp. 613–618, 2013. doi: 10.1016/j.proeng.2013.03.167

Kirigami approach

Kirigami and Technology

Graham P. Collins,“Kirigami and technology cut a fine figure, together,” Proceedings of the National Academy of Sciences, vol. 113, no. 2, pp. 240–241. doi:10.1073/pnas.1523311113

T. C. Shyu, P. F. Damasceno, P. M. Dodd, A. Lamoureux, L. Xu, M. Shlian, M. Shtein, S. C. Glotzer, and N. A. Kotov, “A kirigami approach to engineering elasticity in nanocomposites through patterned defects,” Nat Mater, vol. 14, no. 8, pp. 785–789, Aug. 2015. doi: 10.1038/nmat4327

How does a Kirigami approach helps solar photovolatics?

A. Lamoureux, K. Lee, M. Shlian, S. R. Forrest, and M. Shtein,“Dynamic kirigami structures for integrated solar tracking,” Nat Commun, vol. 6, p. 8092, Sep. 2015. doi:10.1038/ncomms9092

Modelling

Link directly to Low level concentration for PV applications literature review

BDRV Based Modelling

R. W. Andrews, A. Pollard, and J. M. Pearce, “Photovoltaic system performance enhancement with non-tracking planar concentrators: Experimental results and BDRF based modelling,” in Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th, 2013, pp. 0229–0234. doi: 10.1109/PVSC.2013.6744136

Citations

  1. S. Kurtz, “Opportunities and challenges for development of a mature concentrating photovoltaic power industry,” Technical Report, NREL/TP-520- 43208, 2009
  2. Andrews, Rob W.; Pollard, Andrew; Pearce, Joshua M., "Photovoltaic system performance enhancement with non-tracking planar concentrators: Experimental results and BDRF based modelling," Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th, pp.0229,0234, 16–21 June 2013. doi: 10.1109/PVSC.2013.6744136


User:Agorantl

Cookies help us deliver our services. By using our services, you agree to our use of cookies.