Note

This is a literature review page for investigating on Intellectual Property (IP) barriers to Photovoltaic solar cells efficiency. It would be our pleasure if you share your experience in this area with us. (Discussion tab is top left of this page)

Background

Meaning of Intellectual Property: Term of Intellectual Property (IP) refer to the rights that is given by the law to the person who create, innovate or designed a new thing. There are various types of IP such as trade market, copyright, patents, industrial design rights, all artistic works and much more. This phrase (IP) was used for the first time in 1769 but its most ever use refer to the end of 20th century till now. By this law inventors feel more secure to publish their work to the public because all benefits of that invention must refer to the inventor.Intellectual Property Wikipedia

Literature Review

The IP landscape for photovoltaics

Bauer, C. E., & Neuhaus, H. J. (2008, September). The IP landscape for photovoltaics. In Electronics System-Integration Technology Conference, 2008. ESTC 2008. 2nd (pp. 51-56). IEEE.

  • pv patent in us 1968-2008
  • patent applications
  • Principal categories in PV patents (Materials, Control, Manufacturing,..)

Business, market and intellectual property analysis of polymer solar cells

Nielsen TD, Cruickshank C, Foged S, Thorsen J, Krebs FC. Business, market and intellectual property analysis of polymer solar cells. Solar Energy Materials and Solar Cells. 2010 Oct;94(10):1553–71.

  • companies and markets, it seems easy to copy, risk for commercial motivation, Konarka is first in market, Probably has biggest patent portfolio
  • valuable patent search engines [82-84]
  • eminent universities and factories who own the most number of patent are introduced in section 4.8
  • 170 countries are member of Paris Convection and 140 of them have signed the Patent Cooperation Treaty (CPT)
  • Difference between Patent Application & Patent
  • First a patent is published in international mode then goes on national and then regional

Photovoltaic cell basic information

Photovoltaic Cell Conversion Efficiency Basics

these parameters have effect on PV cells efficiency

  • Wavelength of light: solar cell cannot absorb entire spectrum of sunlight. Photons with energy below the material bandgap cannot be absorbed and photons with higher energy, will loose their extra energy as heat or light.
  • Recombination: produced electrons and holes will recombine before contribute in cell's current.This can be due direct recombination, which electrons and hols meet each other randomly, or indirect recombination which is due to impurities, structure defects or surface recombination.
  • Natural resistance: this happen in bulk material, thin surface and contact point of panel to output circuit
  • Temperature: Almost all solar cells lose their efficiency by growing temperature. Considering the most part of incident sunlight convert to heat in solar cell, then operating temperature would be an issue for solar cells. operating T can be considered when designing the solar cells to be a good match or somehow manage to cool the panel for higher efficiency.
  • Reflection: A big portion of sunlight would be reflected on the solar cell surface (30%) if find a way to reduce the reflection, it means there would be more photon available to generate more electron-hole pairs and efficiency of light increases in result. Many methods are introduced to reduce the reflection such as anti reflection coating (multi layers) and texture the top surface of solar cell.
  • Electrical Resistance: It is obvious that by larger electrical contact, electrical resistance would reduce but on the other hand more incident light will be blocked. It means there is a trade off between size of metal contact on the surface and electrical resistance for solar cells. Nearly, new methods are being introduced to overcome this issue like using a very thin transparent metal contact all over the solar cell surface.

Photovoltaic technology development: A perspective from patent growth analysis

Liu JS, Kuan CH, Cha SC, Chuang WL, Gau GJ, Jeng JY. Photovoltaic technology development: A perspective from patent growth analysis. Solar Energy Materials and Solar Cells. 2011 Nov 30;95(11):3130-6.

  • In this paper is tried to find a direct relation between the crude oil price and the number of registered patents. In the graph he draw number of patent graph one year ahead (When the price of crude oil increase, more money will inject to the R&D in PV which will take time for a patent come out, in average one year)
  • In this paper very nicely a search strategy for relevant patent in PV is described in section 4
  • five different category for PV solar cells was achieved (1)Emerging PV include:polymer and dye-sensetive (2)Silicon include: bulk type and thin film silicon (3) CdTe (4)CIGS (5)Group III-V materials.
  • by the number of patent in these groups it is obvious that most focus of research are in category 1,2&5 and can see that scientist are not so much interested in categories 3&4
  • mentioned in this paper that there is a 10 years lag between PV market and its technology development.

Intellectual property rights and low carbon technology transfer: Conflicting discourses of diffusion and development

Ockwell DG, Haum R, Mallett A, Watson J. Intellectual property rights and low carbon technology transfer: Conflicting discourses of diffusion and development. Global Environmental Change. 2010 Oct 31;20(4):729-38.

  • Two sides of IP debates, one group believe this is kind of public good and must be supported by international funds and be accessible for developing countries like as drugs for treating HIV, in contrast, the other side they argue if developing countries be more serious in protecting IPR, the transfer technology would be much easier
  • Those groups which consider IP as a barrier are mostly from developing countries and those groups which consider IPR as a catalyst are from developed countries. U.S only had income $20 billion in 1995 for selling technology!
  • In continue in this paper mentioned in most cases developing countries had access to cutting-edge technologies but there were not enough funding to buy them or having competition in the market with those big eminent companies from developed countries


Intellectual property and access to clean energy technologies in developing countries

Barton JH. Intellectual property and access to clean energy technologies in developing countries. ICTSD Issue Paper. 2007 Dec;2.

  • In this paper tried to find out effects of IP on developing countries in three main sources of clean energy, PV, Wind and bio-mass
  • the conclusion in PV was: it cannot be considered as a barrier in developing countries (paper is for 2007) because there are some manufacturers which are eminent in the market which coming from developing countries such as Suntech Power Co., Ltd in 2006 it was the 4th biggest PV producer while it established in 2001, in continue he discus the main barrier would be competition in the market with those giant manufacturers who have most of the market in their control .

Innovation and international technology transfer: The case of the Chinese Photovoltaic industry

De La Tour A, Glachant M, Ménière Y. Innovation and international technology transfer: The case of the Chinese photovoltaic industry. Energy Policy. 2011 Feb 28;39(2):761-70. In this paper the main reasons that helped China in having a big role in the PV market is investigated.

  • mentioned china was successful only in downstream segment of PV production (Cells and assembling modules) which has many competitions in the market and benefit is not that much, while in upstream segment(silicon purification, ingot and wafer) still developed countries have the most part of the market
  • China did not invest so much on R&D compared to Japan or other developed countries in PV market but managed to buy ready firms, product line and technologies in the market
  • FDI (Foreign Direct Investment) also is another factor which is considered in this paper for a reason of improvement, it is true but its contribution in this success is not impressive

Placing a Glove on the Invisible Hand: How Intellectual Property Rights May Impede Innovation in Energy Research and Development (R& (and) D)

Sovacool BK. Placing a Glove on the Invisible Hand: How Intellectual Property Rights May Impede Innovation in Energy Research and Development (R& (and) D). Alb. LJ Sci. & Tech.. 2008;18:381.

A NEW GENERALIZED DETAILED BALANCE FORMULATION TO CALCULATE SOLAR CELL EFFICIENCY LIMITS

Honsberg, C.B., Corkish, R.C. and Bremner, S.P., 2001. A new generalized detailed balance formulation to calculate solar cell efficiency limits.

  • Two ways to calculate solar efficiency - thermodynamics & detailed balance equation
  • both give same results
  • new detailed balance equation taking into consideration non ideal and non radiative processes
  • inclusion leads to higher efiiciencies

APPROACHING THE 29% LIMIT EFFICIENCY OF SILICON SOLAR CELLS

Swanson, R.M., 2005, January. Approaching the 29% limit efficiency of silicon solar cells. In Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE (pp. 889-894). IEEE

Cookies help us deliver our services. By using our services, you agree to our use of cookies.